摘要
针对目前数值模式预报的风速普遍存在小风预报偏大、大风预报偏小的问题,本文基于支持向量机的方法,结合WRF模式预报和自动观测站的实况数据资料,建立多因子SVM风速预测模型,对渔业避风港锚地风速进行预测修正.实验结果表明,新模型预测的风速和实际风速基本一致,相关性达到了99%,很好地表达了风速与WRF模式预报因子之间的非线性关系,验证了该模型能改进WRF模式输出的风速数据.与仅利用历史风速的非数值SVM和LSSVM风速预报的结果进行比较,进一步证实了多因子SVM风速预测的优越性.
The problem of deviation has long been identified in the wind speed forecasting with numerical model when wind speed turns too high or low. To tackle this problem, multi-factors SVM model to predict and update the wind speed of fishery harbor anchorage is established, which combines the data of WRF model forecast and those from automatic observation stations. The experimental results suggest that the forecasting wind speed and the actual one is basically in agreement with each other, and the correlation is found to reach up to 99%. The presented model also acts as a good expression for the nonlinear relationship between wind speed and WRF model forecasting factors, which verifies the model's ability for updating the WRF wind speed forecasting. By comparing forecast results obtained in this work with other forecast models such as SVN and LSSVM only using historical wind speed, it proves the advantage of the proposed model.
作者
钱斌凯
何彩芬
金炜
倪永森
龚飞
左登
QIAN Bin-kai;HE Cai-fen;JIN Wei;NI Yong-sen;GONG Fei;ZUO Deng(Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China;Zhenhai Observatory, Ningbo 315202, China;Xiangshan Observatory, Ningbo 315700, China)
出处
《宁波大学学报(理工版)》
CAS
2018年第3期14-19,共6页
Journal of Ningbo University:Natural Science and Engineering Edition
基金
国家自然科学基金(61471212)
浙江省自然科学基金(LY16F010001)
宁波市自然科学基金(2016A610091
2017A610297)
浙江省气象局科研项目(2016YB01)
宁波象山县社会发展科技项目(2016C6012)
关键词
支持向量机
风速预测
避风港锚地
多因子
support vector machine (SVM)
wind speed forecasting
harbor anchorage
multi-factors