期刊文献+

基于时空分析的突发事件检测方法 被引量:6

Bursty Event Detection Method Based on Spatio-temporal Analysis
下载PDF
导出
摘要 现有突发事件检测方法多数未考虑事件的重要性,且以孤立的方式看待事件的突发时间域和空间域。为此,提出一种基于时空要素综合分析的突发事件检测方法。引入数据立方体结构存储事件词,通过基于语义相似性的实时事件聚类算法抽取出重要事件。根据TFIDF计算事件在时空维度上的出现权重,给出有限状态机-高斯分布模型识别时空突发事件。实验结果表明,该方法能够有效地识别出事件的突发时间段和突发区域,与现有突发事件检测方法相比,检测突发事件的准确率更高。 The existing bursty event detection method does not consider the importance of the eveuts,and treats the bursty event time domain and spatial domain of the incident in an isolated manner,and proposes an incident detection method based on comprehensive analysis of spatio-temporal elements. The data cube structure is introduced to store event words, and important events are extracted by a real-time event clustering algorithm based on semantic similarity. TFIDF is used to calculate the occurrence weights of events in the space-time dimension,and the finite state machine-Gaussian distribution model is used to identify spatio-temporal events. Experimental results show that the method can effectively identify bursty time and bursty area of the event, compared with the existing emergency detection method,the accuracy of detecting eveuts is higher.
作者 梁月仙 陈自岩 王洋 张跃 郭智 LIANG Yuexian;CHEN Ziyan;WANG Yang;ZHANG Yue;GUO Zhi(Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Chinese Academy of Sciences, B eijing 100190, China;Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences,Beijing 100190,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第5期7-13,共7页 Computer Engineering
基金 国家自然科学基金(41501485)
关键词 突发事件 时空分析 事件抽取 实时事件聚类 数据立方体 bursty event spatio-temporal analysis event extraction real-time event clustering data cube
  • 相关文献

参考文献2

二级参考文献35

  • 1ACE Chinese Annotation Guidelines for Events[EB/OL]. (2005- 03-30). http://www.ldc.upenn.edu/Projects/ACE/docs/Chinese- Events-Guidelines_v5.5.1 .pdf.2005c.
  • 2Ahn D. The Stages of Event Extraction[C]//Proc. of Workshop onAnnotations and Reasoning About Time and Events. Sydney, Australia: [s. n.], 2006: 1-8.
  • 3Hardy H, Kanchakouskaya V, Strzalkowski T. Automatic Event Classification Using Surface Text Features[C]//Proc. of Workshop on Event Extraction and Synthesis. Boston, USA: [s. n.], 2006: 55-61.
  • 4Liao Shasha, Grishman R. Using Document Level Cross-event Inference to Improve Event Extraction[C]//Proc. of the 48th Annual Meeting of the Association for Computational Linguistics. Uppsala, Sweden: [s. n.], 2010: 789-797.
  • 5Naughton M, Kushmerick N, Carthy J. Event Extraction form Heterogeneous News Sources[C]//Proc. of Workshop on Event Extraction and Synthesis. Boston, USA: American Association for Artificial Intelligence. 2006: 7-13.
  • 6Ji Heng, Grishman R. Refining Event Extraction Through Cross-document Inference[C]//Proc. of Meeting of the Association for Computational Linguistics. Columbus, USA: [s. n.], 2008: 254-262.
  • 7Chen Zheng, Ji Heng. Language Specific Issue and Feature Exploration in Chinese Event Extraction[C]//Proe. of Annual Conference of the North American Chapter of the Association for Computational Linguistics. Boulder, USA: [s. n.], 2009:209-212.
  • 8Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3(4-5): 993-1022.
  • 9Lafferty J, Mccallum A, Pereira F. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proe. of the 18th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann, 2001: 282- 289.
  • 10赵妍妍,秦兵,车万翔,刘挺.中文事件抽取技术研究[J].中文信息学报,2008,22(1):3-8. 被引量:105

共引文献13

同被引文献105

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部