期刊文献+

基于多级Haar小波变换与KS统计的突变点快速探测方法 被引量:6

Fast Abrupt-point Detection Method Based on Multistage Haar Wavelet Transform and KS Statistic
下载PDF
导出
摘要 结合多级Haar小波变换与KS统计理论,提出一种对时序数据突变点的快速探测方法(HWKS),对标准参考序列以及待检测序列分别构建均值二叉搜索树和差值二叉搜索树。基于改进的KS检验方法给出二叉树搜索的2种策略,进而构建实现时序数据突变点快速检测的HWKS理论框架。运用HWKS对模拟的时序数据进行检测,与HW方法、T方法和KS方法的比较结果表明,该方法在对时序数据的突变点进行检测时的误差较小、用时最短、准确度较高。 Combined with multi-level Haar wavelet transform and KS statistic theory,this paper proposes a fast detection method for time series data abrupt-point,that names as HWKS. The mean binary search tree and the difference binary search tree are constructed respectively for the standard reference sequence and the sequence to be detected. Based on the improved KS test method,two methods of binary tree search are proposed, and the HWKS theory framework for rapid detection of time series data mutation point is realized. HWKS is used to detect the simulated time series data.Comparison results on HW method,T method and KS method show that HWKS has less error, shorter time and higher accuracy when detecting time series data abrupt-point.
作者 宋巧红 齐金鹏 张煜 SONG Qiaohong;QI Jinpeng;ZHANG Yu(College of Information Science and Technology, Donghua University, Shanghai 201620, China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第5期14-18,24,共6页 Computer Engineering
基金 国家自然科学基金(61305081 61104154) 上海市自然科学基金(16ZR1401300 16ZR1401200)
关键词 KS统计理论 多级Haar小波变换 二叉搜索树 时序数据 突变点检测 KS statistic theory multistage Haar wavelet transform binary search tree time series data abruptpoint detection
  • 相关文献

参考文献5

二级参考文献45

  • 1雷敏,孟光,冯正进.连续动力系统时间序列的非线性检验[J].物理学报,2005,54(3):1059-1063. 被引量:8
  • 2吴善元 王兆军.非参数统计方法[M].北京:高等教育出版社,1996..
  • 3Fayyad U, Piatetsky S G, Smyth P. From data mining to knowledge discovery: An overview[A]. Advances in Knowledge Discovery and Data Mining [C]. USA:AAAI/MIT Press, 1996.
  • 4Edwin K, Roymond N. Algorithms for mining distance-based outliers in large database[A]. Proc of the VLDB Conf[C]. New York: 1998. 392-403.
  • 5Arning A, Agraal A, Raghavan, P. A linear method for deviation detection in large database[A]. Int Conf on Knowledge Discovery in Databases and Data Mining[C]. Portland, 1996. 169-184.
  • 6Oppenheim A V, schafer R W. Digital Signal Processing[M]. New Jersey, USA: Prentice Hall, 1975.
  • 7Roussopoulos N, Kelley S, Vincent E Nearest neighbor queries[A]. In: Proceedings ofACM SIGMOD Intemational Conference on Management of Data[C]. San Jose, CA, 1995, 71-79.
  • 8M M Breunig, H-P Kriegel, R Ng, et al. LOF: Identifying Density-Based Local Outliers[A]. Proc ACM SIGMOD Conf Proc on Management of Data[C]. 2000. 93-104.
  • 9P P Vaidyanathan,P Q Huong. Lattice Structures for Optimal Design and Robust Implementation of Two-Channel Perfect-Reconstruction QMF Banks[J]. IEEE Trans on ASSP,1997,36(1):81-94.
  • 10S Ramaswamy, R Rastogi, K Shim. Efficient Algorithms for Mining Outliers from Large Data Sets[A]. Proc ACM SIGMOD Conf on Management of Data[C]. 2000. 427-438.

共引文献75

同被引文献50

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部