期刊文献+

基于因子分析与K-means聚类耦合的分时保费定价方法研究 被引量:1

Research on Time-sharing Premium Pricing Method Based on Factor Analysis and K-means Clustering
下载PDF
导出
摘要 传统车险定价基于"一人一车"前提,与租赁汽车所有权与使用权分离的运营模式冲突。为了解决租赁汽车分时保费的定价问题,研究了基于驾驶员行为的费率因子分级设计方法。首先,采用因子分析法提取驾驶行为因子,以方差贡献率的加权均值作为权重,设计了驾驶员综合风险评价因子S;然后,以S为聚类指标利用K-means聚类算法实现对驾驶员风险的自动分级,进而为分时保费费率因子的分级提供依据;最后,以某大型租赁公司所提供的19位驾驶员实车数据作为样本,结合某保险公司所提供的违章及出险事故数据,证明了该方法的可行性与有效性,该方法可为以人为中心的车险保费定价提供积极的理论参考。 The traditional auto insurance pricing is based on the premise of "one person-one car",which conflicts with the operation mode of the separation of ownership and use right of the leased car. To solve the pricing problem of the leased car' s time-sharing premium,it has studied the method of rate factor grading design based on driving behaviors. Firstly,it extracted the driving behavior factors by factor analysis and design the complex risk evaluation factor S of drivers based on the weighted mean of variance contribution. Then,the automatic classification of driver risk is realized by using the k-means clustering algorithm with S as the clustering index,it can provide the basis for the classification of premium rate factor. At last,according to the sample analysis of 19 drivers' real vehicle data provided by a large leasing company,the feasibility and validity of this method is proved by combining the data of the illegal and accident records provided by an insurance company. This approach provides a positive theoretical reference for the implementation of UBI.
作者 曾娟 吴兴华 张洪昌 ZENG Juan;WU Xinghua;ZHANG Hongchang(School of Automotive Engineering, WUT, Wuhan 430070, China)
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2018年第2期213-218,共6页 Journal of Wuhan University of Technology:Information & Management Engineering
关键词 分时保费 驾驶行为 因子分析 K-MEANS聚类 time- sharing premium driving behavior factor analysis K- means clustering
  • 相关文献

参考文献2

二级参考文献21

  • 1田玉敏,刘茂.高层建筑火灾风险的概率模糊综合评价方法[J].中国安全科学学报,2004,14(9):99-103. 被引量:67
  • 2Brown B,Chui M,Manyika J. Are You Ready for the Era of "Big Data"[J].{H}Mckinsey Quaterly,2011,(04).
  • 3Vickrey W. Automobile Accidents,Tort Law,Externalities and Insurance:An Economist's Critique[J].{H}Law and Contemporary Problems,1968,(33).
  • 4Butler P,Butler T. Driver Record:A Political Red Herring That Reveals the Basic Flaw in Automobile Insurance Pricing[J].Journal of Insurance Regulation,1989,(02).
  • 5Lemaire J. Bonus-malus Systems in Automobile insurance[M].Kluwer Academic Pub,1995.
  • 6Litman T. Distance-based vehicle insurance as a TDM Strategy[J].{H}TRANSPORTATION QUARTERLY,1997,(03).
  • 7Litman T. Distance-based Vehicle Insurance Feasibility,Benefits and Costs:Comprehensive Technical Report[R].Victoria Transport Policy Institute,2001.
  • 8Ippisch T. Telematics Data in Motor Insurance:Creating Value by Understanding the Impact of Accidents on Vehicle Use[D].University of St.Gallen,2010.
  • 9Tooth R. An Insurance Based Approach to Safer Road Use[A].Sydney,New South Wales,Australia,2012.
  • 10Finnegan D,Sirota C. Is Vehicle Data Recording Auto Insurance's Future[EB/OL].http://www.qualityplanning.com/qpc_resources_public/reports/Vehicle Data Recording.v51inks.pdf,2014.

共引文献16

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部