期刊文献+

Quantitative Rectangular Notch Detection of Laser-induced Lamb Waves in Aluminium Plates with Wavenumber Analysis 被引量:2

Quantitative Rectangular Notch Detection of Laser-induced Lamb Waves in Aluminium Plates with Wavenumber Analysis
下载PDF
导出
摘要 It is difficult to quantitatively detect defects by using the time domain or frequency domain features of Lamb wave signals due to their dispersion and multimodal characteristics.Therefore,it is important to discover an intrinsical parameter of Lamb waves that could be used as a damage sensitive feature.In this paper,quantitative defect detection in aluminium plates is carried out by means of wavenumber analysis approach.The wavenumber of excited Lamb wave mode is a fixed value,given a frequency,a thickness and material properties of the target plate.When Lamb waves propagate to the structural discontinuity,new wavenumber components are created by abrupt wavefield change.The new wavenumber components can be identified in the frequency-wavenumber domain.To estimate spatially dependent wavenumber values,a short-space two-dimensional Fourier transform(FT)method is presented for processing wavefield data of Lamb waves.The results can be used to determine the location,size and depth of rectangular notch.The analysis techniques are demonstrated using simulation examples of an aluminium plate with a rectangular notch.Then,the wavenumber analysis method is applied to simulation data that are obtained through a range of notch depths and widths.The results are analyzed and rules of the technique with regards to estimating notch depth are determined.Based on simulation results,guidelines for using the technique are developed.Finally,experimental wavefield data are obtained in aluminium plates with rectangular notches by a full noncontact transceiving method,i.e.,laser-laser method.Band-pass filtering combined with continuous wavelet transform is used to extract a certain frequency component from the full laser-induced wavefield with wide band.Shortspace two-dimensional FT method is used for further processing full wavefield data at a certain frequency to estimate spatially dependent wavenumber values.The consistency of simulation and experimental results shows the effectiveness of proposed wavenumber method for quantitative rectangular notch detection. It is difficult to quantitatively detect defects by using the time domain or frequency domain features of Lamb wave signals due to their dispersion and multimodal characteristics.Therefore,it is important to discover an intrinsical parameter of Lamb waves that could be used as a damage sensitive feature.In this paper,quantitative defect detection in aluminium plates is carried out by means of wavenumber analysis approach.The wavenumber of excited Lamb wave mode is a fixed value,given a frequency,a thickness and material properties of the target plate.When Lamb waves propagate to the structural discontinuity,new wavenumber components are created by abrupt wavefield change.The new wavenumber components can be identified in the frequency-wavenumber domain.To estimate spatially dependent wavenumber values,a short-space two-dimensional Fourier transform(FT)method is presented for processing wavefield data of Lamb waves.The results can be used to determine the location,size and depth of rectangular notch.The analysis techniques are demonstrated using simulation examples of an aluminium plate with a rectangular notch.Then,the wavenumber analysis method is applied to simulation data that are obtained through a range of notch depths and widths.The results are analyzed and rules of the technique with regards to estimating notch depth are determined.Based on simulation results,guidelines for using the technique are developed.Finally,experimental wavefield data are obtained in aluminium plates with rectangular notches by a full noncontact transceiving method,i.e.,laser-laser method.Band-pass filtering combined with continuous wavelet transform is used to extract a certain frequency component from the full laser-induced wavefield with wide band.Shortspace two-dimensional FT method is used for further processing full wavefield data at a certain frequency to estimate spatially dependent wavenumber values.The consistency of simulation and experimental results shows the effectiveness of proposed wavenumber method for quantitative rectangular notch detection.
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第2期244-255,共12页 南京航空航天大学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.51475012,11772014,and 11272021)
关键词 WAVENUMBER analysis short space two-dimensional FOURIER transform(FT) NOTCH aluminium plate wavenumber analysis short space two-dimensional Fourier transform(FT) notch aluminium plate
  • 相关文献

同被引文献9

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部