期刊文献+

基于置信值重构的视觉目标跟踪算法

Visual target tracking algorithm based on confidence value reconstruction
下载PDF
导出
摘要 为了解决视觉目标跟踪过程中出现的目标表观变化和遮挡问题,在粒子滤波框架下,提出一种基于置信值重构的目标跟踪算法。通过对目标模板进行局部分块并结合提取的背景模板构建分类字典,利用概率协同表示分类算法,获得候选目标局部分块的分类概率。然后通过局部分块的分类概率重构候选目标的置信值。最终通过每个候选目标的置信值获得跟踪结果。实验表明,该文算法在目标表观变化和遮挡的情况下能够取得较好的跟踪效果。 In order to solve the problem of deformation and occlusion for the visual target tracking,a target tracking algorithm based on the confidence value reconstruction is proposed under the particle filter framework in this paper. A classification dictionary is constructed by combing the templates of background and the target's templates using the local patch method. Then,the local patch of the candidates is classified by the probabilistic collaborative representation,and their classification probabilities are further acquired. The confidence value of each candidate is constructed by using the classification probabilities of its local patches. Finally,the tracking result is obtained through the confidence value of all the candidates. Experimental results show that the proposed algorithm is effective for the visual tracking with the deformation and occlusion.
作者 卢钢 彭力 Lu Gang;Peng Li(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122, China)
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第2期210-216,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61374047) 江苏省产学研联合创新基金-前瞻性研究项目(BY2014024 BY2014023-36 BY2014023-25)
关键词 置信值重构 局部分块 概率协同表示 局部分块分类 视觉目标跟踪 confidence value reconstruction local patches probabilistic collaborative representation local patch classification visual target tracking
  • 相关文献

参考文献3

二级参考文献35

  • 1Yang H X, Shao L, Zheng F, et al: Recent advances and trends in visual tracking: a review[J]. Neurocomputing, 2011, 74(18): 3823-3831.
  • 2Smeulders A W, Chu D M, Cucchiara R, et aL. Visual tracking :an experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442-1468.
  • 3Wu Y, Lim J, and Yang M H. Online object tracking: a benchmark[C]. Proceedings of the Computer Vision and Pattern Recognition, Portland, United States, 2013: 2411-2418.
  • 4Comaniciu D and Rmnesh V. Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 5Collins R T. Mean-Shift blob tracking through scale space[C]. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Madison, United States, 2003: 234-240.
  • 6Ning J F, Zhaag L, et al: Robust mean shift tracking with corrected background-weighted histogram[J]. IET Computer Vision, 2012, 6(1): 62-69.
  • 7Babenko B, Yang M H, and Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
  • 8Henriques J F, Caseiro R, Martins P, et al: Exploiting the circulant structure of tracking-by-detection with kernels[C]. Proceedings of European Conference on Computer Vision (ECCV), Florence, Italy, 2012: 702-715.
  • 9Henriques J F, Caseiro R, Martins P, et aL. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
  • 10Adam A, Rivlin E, and Shimshoni I. Robust fragments-basedtracking using the integral histogram[C]. Proceedings of the Computer Vision and Pattern Reco:ition, New York, United States, 2006: 798-805.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部