期刊文献+

引发剂用量对氧化石墨烯吸波性能研究 被引量:1

Study on Microwave Absorbing Property of Graphene Oxide with the Amount of Evocating Agent ( K_2S_2O_4)
下载PDF
导出
摘要 以天然鳞片石墨为原料,改进Hummers法制备氧化石墨烯(GO)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(FTIR)、拉曼光谱(Raman)和矢量网络分析仪(VNA)研究了引发剂(过硫酸钾)的用量对GO形貌、结构、氧化程度、电磁损耗特性、德拜弛豫模型及吸波性能的影响。结果表明:过硫酸钾添加量为10 g,含氧官能团的含量增加,层状结构产生缺陷,层间距为0.90 nm,介电常数和磁导率均较高,在14~18 GHz之间损耗因子达到最大值,为1.07。在17.83 GHz时,反射率达到-34.28 dB,吸波性能最优异。 Graphene oxide was prepared by Hummers methods using natural flake graphite. The structure,morphology, degree of oxidation, electromagnetic loss properties, Debye relaxation and microwave absorbing properties of graphene oxide( GO) were investigated by X-ray diffraction( XRD),Raman spectrometer,scanning electron microscope( SEM),infrared spectrometer( FTIR) and Vector network analyzer( VNA). The results shows that the amount of evocating agent( potassium peroxydisulfate) is 10 g. Increasing the content of oxygen-functional groups and layered structural defects,the layer spacing is 0. 90 nm. The permittivity and permeability are higher,when the loss factor is between 14-18 GHz. The maximum value is 1. 07. At 17. 83 GHz,the reflectivity is -34. 28 dB. It has the best microwave absorbing properties.
作者 马志军 莽昌烨 翁兴媛 程亮 关智浩 郑云生 MA Zhi-jun;MANG Chang-ye;WENG Xing-yuan;CHENG Liang;GUAN Zhi-hao;ZHENG Yun-sheng(College of Mining, Liaoning Technical University, Fuxin 123000, China)
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2018年第4期750-757,共8页 Journal of Synthetic Crystals
基金 国家自然科学基金(51372108)
关键词 引发剂 德拜弛豫模型 氧化石墨烯 微波吸收性能 过硫酸钾 evocating ag en t Debye relaxation model graphene o xide microwave absorbing property potassium peroxydisulfate
  • 相关文献

参考文献4

二级参考文献69

  • 1肇研,段跃新,李蔚慰,梁振方.多壁碳纳米管复合材料在8mm波段的吸波性能[J].复合材料学报,2007,24(3):23-27. 被引量:18
  • 2Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
  • 3Shen, J. F.; Hu, Y. Z.; Shi, M.; Li, N.; Ma, H. W.; Ye, M. X J. Phys. Chem. C2010, 114, 1498.
  • 4Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
  • 5Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H. J. Phys Chem. B 2004, 108, 19912.
  • 6Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
  • 7Di, C. A.; Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B. Adv. Mater. 2008, 20, 3289.
  • 8Wu, J. S.; Pisula, W.; Mullen, K. Chem. Rev. 2007, 107, 718.
  • 9Huang, J.; Zhang, L. M.; Chen, B.; Ji, N.; Chen, F. H.; Zhang, Y.; Zhang, Z. J. Nanoscale 2010, 2, 2733.
  • 10Zhang, X. Y.; Yang, X. Y.; Ma, Y. E; Huang, Y.; Chen, Y. S. Journal of Nanoscience and Nanotechnology 2010, 10, 2984.

共引文献136

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部