期刊文献+

基于AdaBoost集成的WPSO-RBF大坝变形监控模型 被引量:4

Dam Deformation Monitoring by Radial Basis Function Model Optimized by Particle Swarm Optimization with Inertia Weight and Ada Boost
下载PDF
导出
摘要 变形监测是大坝安全监测的必设项目,由于影响因子众多,常利用神经网络(如BP,RBF等)进行参数选取和模型建立。传统的径向基函数(RBF)神经网络因网络结构简单、收敛速度快而被广泛运用,但其在预测中易陷入局部最优且参数选取不当会对其收敛性产生影响。因此,首先利用动态权重粒子群算法(WPSO)对RBF神经网络的3个参数(隐含层基函数的中心c、宽度d及隐含层到输出层的权值w)进行优化,建立基于WPSO-RBF的大坝变形监控模型,然后将WPSO-RBF模型作为弱分类器,采用Ada Boost算法进行集成,建立基于WPSO-RBF-Ada Boost的大坝变形监控模型。将该模型运用到工程实例中,实例结果显示该模型具有收敛速度快、分类精度高、泛化能力好,可建立较优的大坝变形监控模型。 Deformation monitoring is a requisite for dam safety monitoring. Due to a large number of factors,neural networks such as back propagation( BP) and radial basis function( RBF) are often used for parameters selection and model establishment,of which RBF has been widely employed on account of its simple network structure and rapid convergence. Nonetheless,local optimality and inappropriate selection of parameters will exert great impact on the convergence rate. In view of this,the Particle Swarm Optimization with Inertia Weight( referred to as WPSO)is adopted to optimize three parameters of RBF( central value c of hidden layer base function parameter,width d and connection weight w between hidden layer and output layer parameter). In subsequence,the WPSO-RBF model is integrated as a weaker classifier by Ada Boost algorithm,hence establishing a WPSO-RBF-Ada Boost model for dam deformation monitoring. The model is applied to practical engineering,and results suggest that the present model is of fast convergence,high classification precision and good generalization ability.
作者 沈晶鑫 房彬 郑东健 郭芝韵 李丹 SHEN Jing-xin;FANG Bin;ZHENG Dong-jian;GUO Zhi-yun;LI Dan(College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China;State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098,China;Power China Guiyang Engineering Corporation Limited, Guiyang 550081, China)
出处 《长江科学院院报》 CSCD 北大核心 2018年第5期57-62,共6页 Journal of Changjiang River Scientific Research Institute
基金 国家自然科学基金项目(51279052,51579085) 水文水资源与水利工程科学国家重点实验室研究项目(20145028312) 中央高校基本科研业务费专项(2015B32514,2015B33314)
关键词 大坝变形 监控模型 改进粒子群算法 RBF神经网络 ADABOOST算法 dam deformation monitoring model Particle Swami Optimization with Inertia Weight RBF neural network AdaBoost algorithm
  • 相关文献

参考文献6

二级参考文献63

共引文献206

同被引文献55

引证文献4

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部