期刊文献+

基于降低风电场损耗的风电场优化调度研究 被引量:6

RESEARCH OF WIND FARM OPTIMAL SCHEDULING BASED ON REDUCING WIND FARM LOSSES
下载PDF
导出
摘要 提出基于降低风电场损耗损的风电场优化调度模型。以风电机组关键部件总机械损伤量和风电场内集电系统网损最小为目标,结合风电场功率预测数据和负荷调度要求,建立机组优化调度的数学模型;应用粒子群优化算法和萤火虫优化算法求解非线性规划,寻找全局最优解。以华北某风电场为例进行测试,结果表明在满足负荷的要求下,有效减少启停机次数,降低部件损伤值,延长机组寿命,提高风电场运行的安全性、经济性。 The optimal scheduling model of wind farm based on reducing wind farm losses is proposed. The goal is to minimize the total mechanical damage of the key components for the wind turbine and the network loss of the electricity collecting system in the wind farm. The mathematical model of optimal scheduling for unit is set up combining wind power forecast data and load scheduling requirement of wind farm. The particle swarm optimization algorithm and the glowworm optimization algorithm are used to solve nonlinear programming and find the global optimal solution. The certain wind farm in the northern China is as example to carry testing, the results show that under meeting the load requirements, the number of start-stop times of wind turbines and the damage value of components can be effectively reduced, the life of the unit can be extended, and the safety and economy of wind farm operation can be improved.
作者 张晋华 吴文静 王卓然 刘永前 田德 Zhang Jinhua;Wu Wenjing;Wang Zhuoran;Liu Yongqian;Tian De(School of Power, North China University of Water Resources and Electric Power, Zhengzhou 450045, China;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing 102206, China;Henan Water & Power Enginfering Consulting CO., LTD., Zhengzhou 450006, China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2018年第4期1085-1096,共12页 Acta Energiae Solaris Sinica
基金 河南省高等学校重点科研项目计划(15A120002) 河南省科技攻关项目(162102310470) 河南省流体动力机械与流体输送工程创新型科技团队
关键词 机组组合(UC) 风电场优化运行 机械损伤量 粒子群优化算法(PSO) 萤火虫优化算法(GMA) UC (unit commitment) wind farm optimization dispatching mechanical damage value PSO (particle swarm optimization algorithm) GMA (glowworm metaphor algorithm)
  • 相关文献

参考文献5

二级参考文献35

共引文献37

同被引文献75

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部