期刊文献+

基于多目标分子动理论的楼宇负荷用电调度优化 被引量:13

Optimal Scheduling of Building Load Electricity Consumption Based on Multi-Objective Molecular Motion Theory
下载PDF
导出
摘要 针对智能用电环境下保证用电经济性、舒适性以及电网侧稳定性目标的楼宇多用户日负荷调度问题,提出一种基于多目标分子动理论的智能楼宇负荷用电调度优化策略。首先根据楼宇用户中不同负荷特征,对楼宇用电负荷进行分类,搭建楼宇多用户负荷用电调度模型;其次,针对该模型对分子动理论优化算法进行多目标改进,引入基于按维审查的模糊拥挤判定思想得到最优解集可供选择,提高种群多样性和分布性,然后将其用于楼宇多用户负荷调度模型中进行多目标优化;最后,通过算例仿真实验及对比分析可知,所提优化策略能较好地实现楼宇用户用电经济性和舒适性目标,同时达到平抑电网侧波动的效果。 Aiming to ensure electricity economy, comfort and grid side stability in intelligent electricity environment for multi-user daily load scheduling in building, an intelligent building load electricity scheduling strategy based on multi-objective molecular motion theory was proposed. Firstly, according to characteristic of different loads for building users, the building electricity load was classified and a multi-user load electricity scheduling model was built. Secondly, this paper made a multi-objective improvement of molecular motion theory optimization algorithm and introduced the idea of fuzzy congestion decision based on dimension review to get and choose the optimal solution. The improved algorithm increased diversity and distribution of the population, and then used it to carry out multi-objective optimization of multi-user load scheduling model. Finally, according to example simulation and comparative analysis, the proposed optimization strategy can better realize economy and comfort goals of building users’ electricity, and achieve effect of stabilizing fluctuation of grid side.
作者 贾艳芳 易灵芝 李胜兵 JIA Yanfang;YI Lingzhi;LI Shengbing(College of Information Engineering, Xiangtan University, Xiangtan 411105, Hunan Province, China)
出处 《电网技术》 EI CSCD 北大核心 2018年第5期1549-1555,共7页 Power System Technology
基金 国家自然科学基金(61572416) 湖南省自然科学基金(2016JJ5033)~~
关键词 多目标 分子动理论优化算法 自动需求响应 智能用电 负荷调度 multi-objective optimization algorithm based on molecular motion theory automatic demand response intelligent power load scheduling
  • 相关文献

参考文献7

二级参考文献182

  • 1舒隽,张粒子,刘易,彭永华,郭琳.电力市场下日无功计划优化模型和算法的研究[J].中国电机工程学报,2005,25(13):80-85. 被引量:10
  • 2余贻鑫.面向21世纪的智能配电网.南方电网技术研究,2006,2(6):14-16.
  • 3EPRI. 1009102 Power delivery system and electricity markets of the future[R]. PaloAlto, CA: EPRI, 2003.
  • 4EPRI. 1010915 Technical and system requirements of advanced distrihutionautomation[R]. PaloAlto, CA: EPRI, 2004.
  • 5EPRI. 1014600 Electricite de France research and development, profiling and mapping of intelligent grid r&d programs[R]. Palo Alto, CA: EPRI, 2006.
  • 6Haase P. Intelligrid: a smart network of power[J]. EPRI Journal, 2005(Fall): 17-25.
  • 7U. S. Department of Energy , National Energy Technology Laboratory. Modern grid initiative: a vision for modern grid[EB/OL]. 2007-03-01 [2008-10-10]. http://www.netl.doc.gov/modemgrid/docs/.
  • 8Galvin Electricity Initiative. The path to perfect power: a technical assessment[R]. PaloAlto, CA: GalvinElectricity Initiative, 2007.
  • 9European Commission. European technology platform smart grids: vision and strategy for Europe's electricity networks of the future [EB/OL] . 2008-10-10 . http://ec.europa.eu/research/energy/pdf/ smartgrids_en.pdf.
  • 10Global Environment Fund & Centre for Smart Energy. The emerging smart grid[R]. Second Edition. Washington: Global Environment Fund, 2006.

共引文献793

同被引文献165

引证文献13

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部