期刊文献+

基于最短路径修正的多维定标定位算法 被引量:1

Improved multi-dimensional calibration algorithm based on shortest path correction
下载PDF
导出
摘要 当无线传感器网络节点密度较低或节点分布不均匀时,利用多维定标定位算法求出的最短路径与节点实际距离有一定误差。针对这个问题提出了一种基于最短路径修正的改进算法。根据节点的局部密度对无线传感器网络中节点间的边进行重新赋值,计算节点间的距离。结合人工蜂群智能算法选出节点间的最优最短路径,计算出节点间距离矩阵。实验仿真结果表明,该改进算法的定位精度相对于经典集中式多维定标算法提高了11%左右。 The certain error between the shortest path distance of nodes and the actual Euclidean distance of nodes exists when the wireless sensor network node is non-uniform or the node density is low. Aimed at this problem, an improved algorithm based on the shortest path is proposed. The distance between the nodes is calculated by reassigning the edges in the sensor network connection diagram according to the lo- cal density of the nodes. Combined with the intelligent artificial bee colony algorithm to select the optimal shortest path between nodes, the distance matrix between nodes is calculated. Simulation results show that the accuracy of the improved algorithm is about 11% higher than that of MDS_MAP algorithm.
作者 邬春明 杨雪 李二磊 Chunming;YANG Xue;LI Erlei(School of Information Engineering, Northeast Electric Power University, Jilin 132012, China;School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China)
出处 《南京邮电大学学报(自然科学版)》 北大核心 2018年第2期87-91,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(61501107)资助项目
关键词 多维定标 最短路径修正 节点密度 人工蜂群 MDS_MAP shortest path correction node density artificial bee colony( ABC )
  • 相关文献

参考文献4

二级参考文献39

  • 1刘洪杰,王秀峰.多峰搜索的自适应遗传算法[J].控制理论与应用,2004,21(2):302-304. 被引量:23
  • 2王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 3肖玲,李仁发,罗娟.基于非度量多维标度的无线传感器网络节点定位算法[J].计算机研究与发展,2007,44(3):399-405. 被引量:38
  • 4Akyildiz L F, So W I., Cayirci E, et al. A survey on sensor networks[J]. IEEE Communications Magazine, 2002, 40 (8):102- 114.
  • 5Girod L, Bychovskiy V, Elson J, et al. Locating tiny sensors in time and space: a case study[ C]//Proceedings of the IEEE International Conference on Computer Design: VLSI in Computers and Processors. New York: IEEE, 2002: 214- 219.
  • 6Wickelmaier F. An introduction to MDS [D]. Aalborg: Aalborg University, 2003.
  • 7Shang Y, Ruml W, Zhang Y, et al. Localization from connectivity in sensor networks [ J ]. IEEE Transaction on Parallel and Distributed Systems, 2004,15 (11 ) : 961 - 974.
  • 8Shang Y, Ruml W. Improved MDS-based localization[ C]// Proceedings of IEEE INFOCOM. Horn Kong, 2004:2640 - 2651.
  • 9Ji X, Zha H. Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling[C]// Proceedings of IEEE INFOCOM. Hong Kong, 2004:2652- 2661.
  • 10Seapahn M. Localized algorithms in wireless ad-hoc networks location discovery and sensor exposure [ C] //Proceedings of the 2001 ACM International Symposium on Mobile Ad Hoc Networking & Computing. Long Beach: ACM Press, 2001: 106- 116.

共引文献47

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部