期刊文献+

基于大数据安全技术及深度特征的鲁棒视觉跟踪 被引量:1

Robust visual tracking based on large data security technology and depth characteristics
下载PDF
导出
摘要 针对光照变化、目标旋转、背景杂乱等复杂条件下,核相关滤波KCF算法出现目标跟踪漂移或者失败的问题,本文利用卷积神经网络(CNN)对跟踪目标出现光照、旋转、背景杂乱等复杂变化极具鲁棒性的特点,提出了一种基于卷积神经网络的鲁棒视觉跟踪算法CKCF。CKCF算法在考虑大数据安全和隐私保护技术的前提下,利用海量的图片数据集训练VGG模型提取目标深度特征,并融入改进后的KCF跟踪算法中,实验结果表明,与KCF算法相比较,该算法实现了更加鲁棒的跟踪效果,解决了KCF跟踪算法在光照变化、目标旋转、背景杂乱等复杂条件下目标跟踪漂移或者失败的问题。 According to the problem of target tracking drift or failure for nuclear related filter KCF algorithm under the complicated conditions such as the illumination changes,background clutter,target rotation,with the help of Robust characteristics of Convolutional Neural Network( CNN) for light,rotation,background clutter and other complex changes emerged in tracking target,the paper proposes the CKCF robust vision tracking algorithm based on Convolutional Neural Network. Considering data security and privacy protection technology,CKCF algorithm uses the picture data set to train VGG model for target feature deep extraction,which could be integrated into the improved KCF tracking algorithm. The experimental results show that compared with the KCF algorithm,the algorithm has more robust tracking effect,and solves the problem of target tracking drift or failure for nuclear related filter KCF algorithm under the complicated conditions such as the illumination changes,background clutter,target rotation.
作者 左国才 李智勇 吴小平 苏秀芝 ZUO Guocai;LI Zhiyong;WU Xiaoping;SU Xiuzhi(School of Software and Information Engineering, Hunan Vocational Institute of Software, Xiangtan Hunan 411100, China;College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China)
出处 《智能计算机与应用》 2018年第2期47-51,共5页 Intelligent Computer and Applications
基金 湖南省普通高校中青年骨干教师国内访问学者资助项目(湘教通[2017]247号) 湘潭市2017年度市级科技指导性计划项目(ZJ20171018 ZJ20171019) 湖南省普通高校青年骨干教师培养对象资助项目(湘教办通[2014]186号)
关键词 机器视觉 深度学习 卷积神经网络 大数据安全技术 machine vision deep learning Convolutional Neural Network large data security technology
  • 相关文献

参考文献2

二级参考文献28

  • 1Kamstra L, Heijmans H. Reversible data embedding into images using wavelet techniques and sorting. IEEE Transac- tions on Image Processing, 2005, 14(12): 2082-2090.
  • 2van Leest A, van Der Veen M, Bruekers F. Reversible image watermarking//Proceedings of the IEEE International Conference on Image Processing. San Francisco, USA, 2003, 3:731-734.
  • 3Feng Jen-Bang, Lin Luon-Chang, Tsai Chwei-Shyong, et al. Reversible watermarking: Current status and key issues. International Journal of Network Security, 2006, 2(3): 161-171.
  • 4Tian J. Reversible data embedding using a difference expansion. IEEE Transaction on Circuits System for Video Technology, 2003, 13(8).. 890-896.
  • 5Ni Zhi-Cheng, Shi Yun-Qing, Ansari N, Su Wei. Reversible data biding. IEEE Transactions on Circuits and Systems forVideo Technology, 2006, 16(3): 354-362.
  • 6Celik M U, Sharma G, Tekalp A M, et al. Lossless generalize& LSB data embedding. IEEE Transactions on Image Processing, 2005, 14(2): 253-266.
  • 7Wang Xiang, Li Xiao-Long, Yang Bin, Guo Zong-Ming. Efficient generalized integer transform for reversible water- marking. IEEE Signal Processing Letters, 2010, 17(6): 567-570.
  • 8Gibson J, Eveleigh D, Rondeau R, Tan Qing. Benefits and challenges of three cloud computing service models//Proceedings of the 4th International Conference on Computational Aspects of Social Networks. Sco Carlos, Brazil, 2012:198-205.
  • 9Behl A, Behl K. An analysis of cloud computing security issues//Proeeedings of the 2012 World Congress on Information and Communication Technologies. Trivandrum, India, 2012: 109-114.
  • 10Shaikh F B, Haider S. Security threats in cloud computing// Proceedings of the 6th International Conference on Internet Technology and Secured Transactions. Abu Dhabi, United Arab Emirates, 2011:214-219.

共引文献49

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部