期刊文献+

基于卷积神经网络的脱机单个手写汉字识别 被引量:1

Offline single handwritten Chinese character recognition based on Convolutional Neural Network
下载PDF
导出
摘要 本文在Goog Le Net网络基础上搭建了一个适合手写汉字识别的卷积神经网络。研究建立了新的手写汉字训练集,新训练集综合了现有的训练集并剔除了其中的错误,同时加入印刷体训练集,增加书写风格的多样性。训练神经网络时采用随机梯度下降算法,并加入动量项加速网络参数的收敛,使用正则项防止过度拟合,最终训练出的神经网络在训练集上的正确率为99.56%,在验证集上的正确率达到96%,并具有很好的泛化能力。 This paper builds a Convolution Neural Network suitable for handwritten Chinese character recognition based on GoogLeNet network. The research has set up a new training set of handwritten Chinese characters. The new training set integrates the existing training set and removes the errors in them. At the same time,the research has added a printed training set to increase the variety of handwriting styles. In the training of neural network,a stochastic gradient descent algorithm is used,and the momentum term is added to accelerate the convergence of the network parameters. The regular item is used to prevent over-fitting. The final neural network reaches an accuracy rate of 99. 56% on the training set,and 96% on the validation set,which has a good generalization.
作者 李俊阳 雷鑫 宋宇 赛琳伟 LI Junyang;LEI Xin;SONG Yu;SAI Linwei(Department of Mathematics and Physics, Hohai University Changzhou Campus, Changzhou Jiangsu 213022, China)
出处 《智能计算机与应用》 2018年第2期92-95,99,共5页 Intelligent Computer and Applications
关键词 手写汉字识别 卷积神经网络 深度学习 handwritten Chinese character recognition Convolution Neural Networks deep learning
  • 相关文献

参考文献2

二级参考文献79

  • 1KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105.
  • 2DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42.
  • 3ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966.
  • 4BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473.
  • 5ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901.
  • 6SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].CoRR,2013:abs/1312.6229.
  • 7RUSSAKOVSKY O,DENG J,SU H,et al.Image Net large scale visual recognition challenge[J].CoRR,2014:abs/1409.0575.
  • 8LIN M,CHEN Q,YAN S.Network in network[J].CoRR,2013:abs/1312.4400.
  • 9SUN Y,WANG X,TANG X.Deep learning face representation from predicting 10,000 classes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1891-1898.
  • 10TAIGMAN Y,YANG M,RANZATO M A,et al.Deepface:closing the gap to human-level performance in face verification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1701-1708.

共引文献387

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部