期刊文献+

基于Ronchi光栅Talbot效应的相位恢复 被引量:6

Phase Retrieval Based on Talbot Effect of Ronchi Grating
原文传递
导出
摘要 提出了一种基于Ronchi光栅Talbot效应的相位恢复方法。将CCD相机置于Ronchi光栅的Talbot距离处,记录Ronchi光栅的自成像强度分布。通过随机并行梯度下降(SPGD)算法优化Zernike多项式系数,恢复入射相位。数值模拟实验结果表明,所提出的方法能够快速实现高精度的相位恢复,具有收敛速度快、精度高、抗噪声等优点。 One phase retrieval method based on the Talbot effect of Ronchi grating is proposed.A CCD camera is placed at the Talbot distance of Ronchi grating to record the self-image intensity distribution of Ronchi grating.By using the stochastic parallel gradient descent(SPGD)algorithm,the coefficients of Zernike polynomials are optimized to retrieve the input phase.The numerical simulation results show that,the proposed method can quickly achieve a high-precision phase retrieval and possesses the advantages of fast convergence,high precision,and antinoise and so on.
作者 陈升 李常伟 张思炯 Chen Sheng;Li Changwei;Zhang Sijiong(Nanjing Institute of Astronomical Optics & Technology, National Astronomical Observatories Chinese Academy of Sciences, Nanjing, Jiangsu 210042, China;Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology Nanjing, Jiangsu 210042, China;University of Chinese Academy of Sciences, Beijing 100049, China)
出处 《光学学报》 EI CAS CSCD 北大核心 2018年第4期38-45,共8页 Acta Optica Sinica
基金 国家自然科学基金面上项目(11373048 11573047) 国家自然科学基金青年科学基金项目(11403066)
关键词 光栅 光计算 相位恢复 随机并行梯度下降(SPGD)算法 Ronchi光栅 TALBOT效应 ZERNIKE多项式 gratings optical computing phase retrieval stochastic parallel gradient descent (SPGD) algorithm Ronchi grating Talbot effect Zernike polynomials
  • 相关文献

参考文献5

二级参考文献61

  • 1薛斌党,郑世玲,姜志国.基于图像序列的YG算法二维相位恢复[J].光电子.激光,2009,20(3):393-396. 被引量:1
  • 2曾发,谭峭峰,魏晓峰,向勇,严瑛白,金国藩.一种可对复杂光场进行相位恢复的算法[J].中国激光,2006,33(3):339-342. 被引量:13
  • 3毛珩,王潇,赵达尊.Application of phase-diverse phase retrieval to wavefront sensing in non-connected complicated pupil optics[J].Chinese Optics Letters,2007,5(7):397-399. 被引量:8
  • 4R. A. Muller, A. Buffington. Real-time correction of atmospherically degraded telescope images through image sharpening[J]. J. Opt. Soc. Am. A, 1974, 64(9): 1200-1210
  • 5M. A. Vorontsov, G. W. Carhart. Adaptive optics based on analog parallel stochastic optimization:analysis and experimental demonstration[J]. J. Opt. Soc. Am. A, 2000, 17(8):1440-1453
  • 6R. Mukai, K. Wilson, V. Vilnrotter. Application of genetic and gradient descent algorithms to wave-front compensation for the deep-space optical communications Receiver [R].The Interplanetary Network Progress Report, Vol. 42 - 161, Jet Propulsion Laboratory, Pasadena, California, May 15, 2005
  • 7S. Zommer, E. N. Ribak, S. G. Lipson et al.. Simulated annealing in ocular adaptive optics[J]. Opt. Lett., 2006, 31(7) : 1-3
  • 8J. C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation [J]. IEEE Trans. on Automatic Control, 1992, 37(3):332-341
  • 9T. Weyrauch, M. A. Vorontsov, T. G. Bifano et al.. Microscale adaptive optics: wave-front control with a μ-mirror array and a VLSI stochastic gradient descent controller [J]. Appl. Opt., 2001, 40(24): 4243-4253
  • 10A. J. Masino, D. J. Link. Adaptive optics without a wavefront sensor[C]. Proc. SPIE, 2005, 5895:58950T-1

共引文献80

同被引文献36

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部