期刊文献+

Porous hollow palladium nanoplafform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy 被引量:1

Porous hollow palladium nanoplafform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy
原文传递
导出
摘要 Cancer is one of the major causes of human death. There are many types of cancer treatment including surgery, chemotherapy, radiotherapy, and photothermal therapy. Combining different therapies can synergistically enhance the therapeutic effect. We developed porous hollow palladium nanoparticles (PHPdNPs) to co-deliver ^131I (a radioisotope that is commonly used in radiotherapy) and doxorubicin (DOX; a chemotherapy drug). Compared with other mesoporous nanocarriers, our PHPdNPs exhibited impressive photothermal conversion efficiency and stability. Drug loading is high and drug release is controllable by repeated laser irradiation and acidic pH in tumor microenvironments. Owing to the specific interaction between palladium and iodine, the PHPdNPs serve as effective ^131I delivery vehicles with excellent radiochemical stability. A single dose of [^131I]PHPdNPs-DOX has superior antitumor efficacy because it enables a combination of chemo-, photothermal-, and radio-therapy. Moreover, the nanocomplex has no obvious side-effects in mice. Therefore, we believe that PHPdNPs are excellent candidates for multimodal imaging-guided therapy. Cancer is one of the major causes of human death. There are many types of cancer treatment including surgery, chemotherapy, radiotherapy, and photothermal therapy. Combining different therapies can synergistically enhance the therapeutic effect. We developed porous hollow palladium nanoparticles (PHPdNPs) to co-deliver ^131I (a radioisotope that is commonly used in radiotherapy) and doxorubicin (DOX; a chemotherapy drug). Compared with other mesoporous nanocarriers, our PHPdNPs exhibited impressive photothermal conversion efficiency and stability. Drug loading is high and drug release is controllable by repeated laser irradiation and acidic pH in tumor microenvironments. Owing to the specific interaction between palladium and iodine, the PHPdNPs serve as effective ^131I delivery vehicles with excellent radiochemical stability. A single dose of [^131I]PHPdNPs-DOX has superior antitumor efficacy because it enables a combination of chemo-, photothermal-, and radio-therapy. Moreover, the nanocomplex has no obvious side-effects in mice. Therefore, we believe that PHPdNPs are excellent candidates for multimodal imaging-guided therapy.
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第5期2796-2808,共13页 纳米研究(英文版)
基金 This research was supported in part by the National Key Research and Development Program of China (No. 2016YFA0203600), National Natural Science Foundation of China (Nos. 81571743, 51502251, and 81571707), Fundamental Research Funds for Xiamen University (No. 20720160067) and Natural Science Foundation of Fujian Province (Nos. 2015J01519 and 2014Y2004).
关键词 porous hollo wnanopartides RADIOTHERAPY phototherrnal therapy CHEMOTHERAPY porous hollo wnanopartides,radiotherapy,phototherrnal therapy,chemotherapy
  • 相关文献

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部