期刊文献+

交流量子化霍尔效应的研究与应用 被引量:3

Research on AC Quantum Hall Resistance Standard and Application
下载PDF
导出
摘要 电阻有频率变差,电阻在交流状态下的溯源是计量领域的难题,以往采用交直流差可计算电阻实现了交流电阻的溯源,但存在稳定性和一致性较差的问题,当前采用交流量子化霍尔效应作为交流电阻标准成为计量领域的研究热点。其中需要解决交流量子化霍尔电阻及其向实物标准电阻传递的准确度问题。本文介绍了采用分裂式屏蔽结构克服交流量子化霍尔电阻频率误差的方法,研制10-8量级高准确度四端对电桥满足交流量子电阻的传递需求,研制完全等电位屏蔽结构的交流电桥校准装置保证四端对电桥的准确度,并介绍了交流量子电阻基准的应用领域。 AC resistance usually shows AC-DC difference of frequency response in ac current flow. And then calibration and tracing the value of ac resistor is a hard work in metrology area. Operator can trace the ac resistor's value withcalculable resistor of AC-DC difference. But the stability and coherence of the calculable resistor of AC-DC difference arein poor condition. In further step, AC quantum hall resistance standard work well as a new ac resistance value tracing meth-od, in condition making good state of ac quantum hall effect reduplication and tracing precision to ac resistance standard.In this paper we introduce a split shield method of quantum hall resistance for avoiding frequency response. Also a high pre-cision at n E-8 degree tracing method is introduced with 4 terminal pair ac bridge,together with high precision 4 terminalpair ac bridge calibration method with equal potential shield. The application area of ac quantum hall resistance standard isintroduced.
作者 黄晓钉 蔡建臻 佟亚珍 HUANG Xiao-ding;CAI Jian-zhen;TONG Ya-zhen(Beijing Orient Institute of Measurement and Test, Beijing 100190, China)
出处 《宇航计测技术》 CSCD 2018年第1期32-36,共5页 Journal of Astronautic Metrology and Measurement
关键词 量子基准 量子化霍尔效应 四端对 交流电桥 交流电阻 Quantum standard Quantum hall effect 4 terminal pair Ac bridge Ac resistance
  • 相关文献

参考文献1

二级参考文献13

  • 1K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45,494, 1980.
  • 2A. Hartland, et al, CONTEMP. PHYS. vol. 29, NO. 5, 477 -498, 1988.
  • 3B. Jeckelmann and B. Jeanneret, Rep. Prog. Phys. 64 1 603 -1 655, 2001.
  • 4W. Poirier, A. Bounouh, K. Piquemal, G. Genev-s,and J. Hayashi, H. Fhima, F. P. Andr6, " RK/100 andRK/200 quantum Hall array resistancestandards," J. Appl. Phys., vol. 92, no. 5, pp. 2 844-2 854, Sep. 2002.
  • 5G. Hein, B. Schumacher, and F. J. Ahlers, "Prepara- tion of quantum Hall effect device arrays," in Proc. CPEM Dig. , London, U. K. , 2004:273 - 274.
  • 6Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature (London) 438, 197 - 200, 2005.
  • 7Zhang, Y. B. , Tan, Y. W. , Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature (London) 438, 201 - 204, 2005.
  • 8Novoselov, K. S. et al. Room-temperature quantum hall effect in graphene. Science 315, 1 379 - 1 379, 2007.
  • 9Giesbers, A. J. M. et al. Quantum resistance metrology in graphene. Appl. Phys. Lett. 93, 222 109 -222 103, 2008.
  • 10Tzalenchuk, A. et al. Towards a quantum resistance standard based on epitaxial graphene. Nature Nanotech- nol. 5, 186 -189, 2010.

共引文献9

同被引文献14

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部