摘要
The present study was conducted to determine the effects of elevated pCO2 on growth, photosynthesis, dark respiration and inorganic carbon acquisition in the marine microalga Dunaliella salina. To accomplish this, D. salina was incubated in semi-continuous cultures under present-day CO2 levels (390 μatm, PHNBs: 8.10), predicted year 2100 CO2 levels (1000 μatm, pHNBs: 7.78) and predicted year 2300 CO2 levels (2 000μatm, PHNBS: 7.49). Elevated pCO2 significantly enhanced photosynthesis (in terms of gross photosynthetic O2 evolution, effective quantum yield (△F/F'm), photosynthetic efficiency (a), maximum relative electron transport rate (rETRmax) and ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubiseo) activity) and dark respiration olD. salina, but had insignificant effects on growth. The photosynthetic 02 evolution olD. salina was significantly inhibited by the inhibitors acetazolamide (△Z), ethoxyzolamide (EZ) and 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), indicating that D. salina is capable of acquiring HCO3 via extracellular carbonic anhydrase and anion-exchange proteins. Furthermore, the lower inhibition of the photosynthetic O2 evolution at high pCO2 levels by AZ, EZ and DIDS and the decreased carbonic anhydrase showed that carbon concentrating mechanisms were down-regulated at high pCO2. In conclusion, our results show that photosynthesis, dark respiration and CCMs will be affected by the increased pCO2/low pH conditions predicted for the future, but that the responses olD. salina to high pCO2/low pH might be modulated by other environmental factors such as light, nutrients and temperature. Therefore, further studies are needed to determine the interactive effects ofpCO2, temperature, light and nutrients on marine microalgae.
The present study was conducted to determine the ef fects of elevated pCO_2 on growth, photosynthesis, dark respiration and inorganic carbon acquisition in the marine microalga D unaliella salina. To accomplish this, D. salina was incubated in semi-continuous cultures under present-day CO_2 levels(390 μatm, p HN BS : 8.10), predicted year 2100 CO_2 levels(1 000 μatm, p HN BS : 7.78) and predicted year 2300 CO_2 levels(2 000 μatm, p H NBS : 7.49). Elevated pCO_2 significantly enhanced photosynthesis(in terms of gross photosynthetic O_2 evolution, ef fective quantum yield(ΔF/F' m), photosynthetic efficiency( α), maximum relative electron transport rate(r ETRm ax) and ribulose-1,5-bisphosphate carboxylase/oxygenase(Rubisco) activity) and dark respiration of D. salina, but had insignificant effects on growth. The photosynthetic O_2 evolution of D. salina was significantly inhibited by the inhibitors acetazolamide(AZ), ethoxyzolamide(EZ) and 4,4'-diisothiocyanostilbene-2,2′-disulfonate(DIDS), indicating that D. salina is capable of acquiring HCO ˉ 3 via extracellular carbonic anhydrase and anion-exchange proteins. Furthermore, the lower inhibition of the photosynthetic O2 evolution at high pCO_2 levels by AZ, EZ and DIDS and the decreased carbonic anhydrase showed that carbon concentrating mechanisms were down-regulated at high pCO_2. In conclusion, our results show that photosynthesis, dark respiration and CCMs will be af fected by the increased pCO_2/low p H conditions predicted for the future, but that the responses of D. salina to high pCO_2/low p H might be modulated by other environmental factors such as light, nutrients and temperature. Therefore, further studies are needed to determine the interactive eff ects of pCO_2, temperature, light and nutrients on marine microalgae.
基金
Supported by the Joint Funds of the National Natural Science Foundation of China and the Marine Science Research Center of the People’s Government of Shandong Province(No.U1406403)
the National Natural Science Foundation of China(No.41476091)