摘要
羟基磷灰石(hydroxyapatite,HA)-壳聚糖(chitosan,CS)复合材料在很大程度上可实现HA与CS两者优势互补,有望成为一种理想的骨替换材料.本研究采用分子动力学(molecular dynamics,MD)方法研究HA的3个晶面(001)、(100)和(110)分别与CS复合后混合体系的相互作用,分析HA这3个晶面分别与CS复合后的力学性能.结果表明,3个晶面所对应结合能大小顺序为HA(110)>HA(100)>HA(001).其中,HA(110)面与壳聚糖复合后的力学性能最佳,复合结构的剪切模量由29.2 GPa升至42.4GPa;x、y、z方向上杨氏模量分别由92.0、62.7和57.0 GPa升至95.6、102.2和97.5 GPa,3个方向上的杨氏模量差量最大值由46.7%降为7.0%,由此克服了因材料各向异性导致的材料缺陷.
Hydroxyapatite-chitosan(HA-CS) composite could complement the advantages of the two materials and become an ideal bone replacement material. In this paper,by using the molecular dynamics(MD) method,we study the interactions between CS and the three lattice planes of HA((001),(100) and(110)),respectively.The mechanical properties in the composites are also studied and analyzed. The results show that the highest binding energy appears between HA(110) and CS,whereas the lowest is between HA(001) and CS. On the other hand,the combination between HA(110) and CS has the best mechanical properties. The shear modulus of the composite material increases from 29. 2 GPa to 42. 4 GPa. Accordingly,the Young's modulus rises from 92. 0,62. 7 and 57. 0 GPa to 95. 6,102. 2 and 97. 5 GPa,corresponding to the three Young's modulus values in x,y and z directions,respectively. The maximum difference of Young's moduli among the three directions are reduced from 46. 7% to 7. 0%,indicating that the material defects resulting from anisotropy could be overcome.
作者
袁秋华
万磊
石鑫
林亚宁
徐安平
张自强
陈泽汇
张培新
YUAN Qiuhua;WAN Lei;SHI Xin;LIN Yaning;XU Anping;ZHANG Ziqiang;CHEN Zehui;and ZHANG Peixin(College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P. R. China;9^th Institute of China Electronics Technology Group Corporation, Mianyang 621000, Sichuan Province, P. R. China)
出处
《深圳大学学报(理工版)》
EI
CAS
CSCD
北大核心
2018年第3期299-306,共8页
Journal of Shenzhen University(Science and Engineering)
基金
深圳市科技基础研究计划资助项目(JCYJ20150525092941007)
国家自然科学基金资助项目(21471102)~~
关键词
生物材料学
羟基磷灰石
壳聚糖
分子动力学
结合能
力学性能
骨修复材料
biomaterial
hydroxyapatite
chitosan
molecular dynamics
binding energy
mechanical property
bone replacement material