期刊文献+

融合元胞自动机和特征加权花卉图像分类方法

A Method of Flower Image Classification Based on Cellular Automaton and Weighted Feature Fusion
下载PDF
导出
摘要 图像分割和特征融合是提高花卉图像分类精度的两个主要步骤,但是传统的图像分割方法常常会因花卉图像背景过于复杂而造成分割效果不佳,而且一般的特征融合方法忽略了不同特征对花卉分类贡献的不同。为有效提高花卉图像分类精度,提出一种基于元胞自动机和加权特征融合的花卉图像分类方法。首先,应用元胞自动机在目标和背景之间自然地形成一条明显的分界线,从而将花卉的主体区域从复杂背景中提取出来。其次,对提取的花卉主体区域的颜色特征和局部特征进行加权融合,然后利用SVM实现了花卉图像分类。最后,通过实验验证了该方法对花卉分类的有效性。 Image segmentation and feature fusion are two main steps to improve the precision of flower image classification. But the traditional image segmentation methods often lead to poor effect because of the complicated background of flower images. Furthermore,the general feature fusion method ignores the different contributions of different features on the flower classification. To effectively improve the accuracy of flower image classification,a method of flower image classification based on cellular automation and weighted feature fusion is presented. First,a clear dividing line between the target and background is naturally formed using cellular automaton,and the main area of flowers is extracted from the complex background. Secondly,the color features and local characteristics from the body area are respectively weighted and merged,and the flower images are classified with SVM. Finally,the effectiveness of our method is verified by experiments of flower image classification.
作者 李哲妍 张素兰 胡立华 张继福 LI Zhe-yan;ZHANG Su-lan;HU Li-hua;ZHANG Ji-fu(School of Computer science and Technology,Taiyuan University of Science and Technology,Taiyua 030024,China)
出处 《太原科技大学学报》 2018年第3期203-209,共7页 Journal of Taiyuan University of Science and Technology
基金 国家青年科学基金(61402316)项目 校博士启动基金(20132005)项目
关键词 图像分割 元胞自动机 特征融合 加权特征 花卉图像分类 image segmentation, cellular automaton, feature fusion, weighted charac teristic, fow erimage classification
  • 相关文献

参考文献3

二级参考文献61

  • 1孙君顶,周利华.一种改进的基于熵的图像检索算法[J].红外技术,2005,27(1):45-48. 被引量:7
  • 2庄连生,髙浩渊,刘超,等.非负稀疏局部线性编码[J].软件学报,2011,22(增刊(2):89-95.
  • 3SU C H, WAHAB M H A, HSIEH T M. Image retrieval based on color and texture features [C]//IEEE 9th International Conference on Fuzzy Systems and Knowledge Discovery. Chongqing, China: IEEE, 2012: 1816- 1819.
  • 4BERENS J, FINLAYSON G D, QIU G. Image indexing using compressed color histograms [J]. lEE Proc Vi- sion Image Signal Process, 2000, 147(4) : 349-355.
  • 5CHEN Xufeng, MENG Xiangfang. Iraage retrieval based on optimal matching with block histogram [C]//2nd International Conference on Information Science and Engineering. Hangzhou: IEEE, 2010: 5135-5138.
  • 6LI Xiaojie, WANG Weilan, YANG Wei. Improved local accumulate histogram-based Thangka Iamge Retrieval [C]//International Conference on Image Analysis and Signal Processing. Zhejiang: IEEE, 2010: 318-321.
  • 7ZACHARY J M. An information theoretic approach to content based image retrieval [D]. Baton Rouge, USA: Louisiana State University, 2000.
  • 8CHEN Zhigang. Using fuzzy theory and information entropy to detect leakage for pipelines [C]//IEEE 10th World Congress on Intelligent Control and Automation. Beijing, China: IEEE, 2012: 3232-3235.
  • 9Huang Y Z, Wu Z F, Wang L, et al. Feature coding in image classification: a comprehensive study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 493-506.
  • 10Yan Y P, Tian X M, Yang L J, et al. Semantic-spatial matching for image classification[C]//Proceedings of IEEE International Conference on Multimedia and Exposition. Los Alamitos: IEEE Computer Society Press, 2013:1-6.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部