期刊文献+

基于LBP-HSV模型及改进SIFT算法的行人再识别算法 被引量:4

Person Re-identification Algorithm Based on LBP and HSV Model and Improved SIFT Algorithm
下载PDF
导出
摘要 针对SIFT算法计算量大,复杂背景下匹配准确率低的问题,文章提出了一种结合LBP-HSV模型与改进SIFT算法的目标识别算法;首先利用LBP直方图和HSV模型共同筛选出目标相似区域;然后利用SIFT算法检测目标与相似区域的特征点,并使用改进的HOG特征描述特征向量;最后采用最近邻加权欧式距离的匹配策略,找出匹配点对;基于多组行人图片的目标识别结果表明,文中算法具有较强的鲁棒性,识别准确率较高,且相较于SIFT算法,匹配速率大大提高。 Aiming at solving the problem that SIFT(scale invariant feature transform)algorithm's computation complexity is high and its matching accuracy is low in a complex background,an image matching algorithm by combining LBP-HSV model and improved SIFT algorithm is proposed.It first utilizes LBP histogram and HSV model to screen the identified similar region.Then it uses SIFT algorithm to detect the feature points of the target and alternative region,and take advantages of improved HOG feature to describe feature vectors.Finally,it finds matching points by using k-nearest-neighbor algorithm and weighted Euclidean distance.The results of experiments carried out on multiple pedestrian pictures show that the proposed algorithm has good robustness and high accuracy,and compared with SIFT algorithm,the matching speed is greatly improved.
作者 晋丽榕 王海梅 徐丹萍 Jin Lirong, Wang Haimei, Xu Danping(College of Automation, Nanjing University of Science and Technology, Nanjing 210094, Chin)
出处 《计算机测量与控制》 2018年第5期144-147,共4页 Computer Measurement &Control
关键词 改进SIFT算法 LBP特征 HSV模型 相似区域 改进的HOG特征 SIFT algorithm LBP feature HSV model similar region improved HOG feature
  • 相关文献

参考文献5

二级参考文献99

  • 1张华.基于空间颜色特征的行人重识别方法[J].华中科技大学学报(自然科学版),2013,41(S2):209-212. 被引量:11
  • 2Doretto G, Sebastian T, Tu P,et al.. Appearance-based person reidentification in camera networks: problem overview and current approaches [ J ]. Journal of Ambient Intelligence and Humanized Computing, 2011, 2 (2) : 127-151. [DOI: 10. 1007/s12652- 010-0034-y].
  • 3Cai Y, Pietikaincn M. Person re-identification based on global color context [ C ]//ACCV 2010 International Workshops. Berlin Heidelberg: Springer, 2011 : 205-215.
  • 4Brnn L, Conte D, Foggia P, et al. People re-identification by graph kernels methods [ C ]//Graph-Based Representations in Pattern Recognition. Berlin Heidelberg : Springer ,2011:285 -294.
  • 5Bak S, Corvee E, Bremond F, et al. Person re-identification using spatial covariance regions of human body parts [ C ]// Pro- ceedings of the 7th IEEE International Conference on Advances on Video and Signal-Based Surveillance. Boston, MA, USA: IEEE Computer Society, 2010:435-440.
  • 6Farenzena M, Bazzani L, Perian A, et al. Person re-identification by symmetry-driven accumulation of local features [ C ]// Pro- ceedings uf the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE Computer Society, 2010:2360-2367.
  • 7Aziz K E, Merad D, Fertil B. People re-identification across multiple non-overlapping cameras system by appearance classifi- cation and silhouette part segmentation [ C ]// Proceedings of the 8th IEEE International Conference un Advanced Video and Signal-based Surveillance. Klagenfurt, Austria: IEEE Computer Society, 2011 : 303-308.
  • 8Banml M,Stiefelhagen R. Evaluation of local features for person re-identification in image sequences [ C ]// Proceedings of the International Conference on Advanced Video and Signal-based Surveillance . Klagenfurt, Austria : IEEE Computer Society,2011:291-296.
  • 9Bak S, Corvee E. Bremond F, et al. Person re-identification using haar-based and DCD-based signature[ C ]//Proceedings of the International Conference on Advanced Video and Signal Based Surveillance . Washington, DC, USA : IEEE Computer Society, 2010 : 1-8.
  • 10Gray D, Tao H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[ C ]// Proceedings of the 10th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2008:262-275.

共引文献67

同被引文献25

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部