期刊文献+

基于激光雷达和Kinect信息融合的导盲机器人SLAM研究 被引量:12

SLAM research of seeing eyes robot based on Lidar and Kinect data fusion
下载PDF
导出
摘要 针对室内复杂的未知环境,在采用激光雷达进行即时定位和地图构建SLAM的基础上,提出了一种融合三维深度信息和激光信息的导盲机器人SLAM方法.首先对比分析ROS机器人操作系统中几种主要的SLAM方法,通过深度传感器Kinect采集的信息,得到三维SLAM地图.为了弥补激光雷达采集数据方面的不足,先使用经典的Canny算法对地图进行边缘检测,再进行扩展相位相关计算得出地图间的平移、旋转和尺度变化,使用所得参数拼接地图,实现对三维SLAM地图和二维SLAM地图的融合.通过真实环境中的实验验证,该模型地图能足够全面和精确的识别环境和障碍物,机器人可以更好地完成导盲任务. To deal with the complicated unknown indoor environment,a SLAM( simultaneous localization and mapping) algorithm based on lidar data is proposed,which can fuse lidar data to Kinect data and be used in seeing-eye robots. Firstly several cardinal SLAM methods are compared and analyzed in Robot Operating System( ROS),then a 3 D SLAM map is created with the Kinect information. To make up the shortcoming of lidar on data acquisition,classical Canny edge detection method is introduced to detect map edge. Then the map translation,rotation and scale changes are calculated by the extended phase correlation method. These parameters are utilized to stitch 3 D SLAM map and 2 D SLAM map. Through the experiment in the specific real environment,the map can comprehensively and accurately recognize the environment and obstacles,and the robot can complete the task of blind guiding better.
作者 刘志 陈超 LIU Zhi;CHEN Chao(School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 ,China)
出处 《江苏科技大学学报(自然科学版)》 CAS 2018年第2期218-223,共6页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 江苏省产学研前瞻性联合研究项目(BY2013066-10)
关键词 激光雷达 KINECT 导盲机器人 SLAM 信息融合 地图拼接 lidar Kinect blind guiding robot SLAM information fusion map merging
  • 相关文献

参考文献4

二级参考文献127

  • 1高健,黄心汉,彭刚,杨涛,伍翼.移动机器人PID运动控制器参数的模糊自整定[J].华中科技大学学报(自然科学版),2004,32(S1):48-51. 被引量:10
  • 2陆华才,徐月同,杨伟民,陈子辰.永磁直线同步电机进给系统模糊PID控制[J].电工技术学报,2007,22(4):59-63. 被引量:54
  • 3常健,吴成东,李斌.移动机器人避障方法综述[J].仪器仪表学报,2010,3l(8):439-442.
  • 4Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I. The essential algorithms[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-108.
  • 5Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty[J]. International Journal of Robotics Re- search, 1986, 5(4): 56-68.
  • 6Thrun S, Liu Y F, Koller D, et al. Simultaneous localization and mapping with sparse extended information filters[J]. Inter- national Journal of Robotics Research, 2004, 23(7/8): 693-716.
  • 7Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping prob- lem[C]//Proceedings of the National Conference on Artificial Intelligence. Menlo Park, USA: AAAI, 2002: 593-598.
  • 8Thrun S. Robotic mapping: A survey[M]//Exploring Artificial Intelligence in the New Millennium. San Francisco, USA: Mor- gan Kaufmann, 2002: 1-35.
  • 9Huang S D, Dissanayake G. Convergence and consistency anal- ysis for extended Kalman filter based SLAM[J]. IEEE Transac- tions on Robotics, 2007, 23(5): 1036-1049.
  • 10Thrun S, Burgard W, Fox D. Probabilistic robotics[M]. Cam- bridge, USA: MIT Press, 2005.

共引文献116

同被引文献110

引证文献12

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部