期刊文献+

一种基于鞍点近似的高效二阶可靠性分析方法

An Efficient SORM Method Based on the Saddle-Point Approximation
下载PDF
导出
摘要 一次可靠性分析方法虽然效率高但在解决非线性状态极限函数问题时精度低,二次可靠性分析方法计算精度高但是效率较低,工程实际中很难普遍使用。为此,在分析传统二阶可靠性分析方法精度损失原因的基础上提出了一种具有较高精度且相对二阶可靠性分析方法高效的可靠性分析方法。所提方法首先用一系列的二次多项式组合近似表示极限状态函数。进而通过变换求出近似极限状态函数的累积量母函数,使用鞍点近似求得失效概率。最后用一个数值案例证明方法的有效性。 Firstorder reliability method(FORM)is in vain to solve the nonlinear limit state function for accuracy although it have high efficiency. While second order reliability method(SORM)ownsconsiderable precision of calculation but low efficiency,so it's difficult to be widely used in engineering practice. For this reason,this paper proposes a reliability analysis method with two order accuracy and relative high efficient than SORM. Before that the reasons for the low efficiency of traditional reliability analysis are researched firstly in it. First of all,the method approximates the limit state functions with a series of quadratic polynomial. Then the cumulative generating function of approximate limit state function is calculated.Finally the saddle point approximation is used to calculate the failure probability easily. At the end of the article,a numerical example is present to prove the effectiveness of the method.
作者 刘继红 付超 孟欣佳 LIU Ji-hong;FU Chao;MENG Xin-jia(School of Mechanical Engineering and Automation,Beihang University,Beijing 100191,China;School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处 《机械设计与制造》 北大核心 2018年第5期32-34,共3页 Machinery Design & Manufacture
基金 国家自然科学基金(51175019)
关键词 二阶可靠性分析方法 多学科可靠性分析 二次多项式 鞍点逼近 Second Order Reliability Method Multidisciplinary Reliability Analysis Quadratic Polynomial Approximation Saddlepoint Approximation
  • 相关文献

参考文献4

二级参考文献35

  • 1刘惟信.机械可靠性设计[M].北京:清华大学出版社,2003.74-466.
  • 2Hasofer M A, Lind N C. Exact and invariant second-moment code format[J].ASCE J Eng Mech Div, 1974, 100 (EM1) : 111-121.
  • 3Breitung K. Asymptotic approximations for multinomial integrals[J]. Journal of Engineering Mechanics, 1984, 110(3): 357-366.
  • 4Du X, Chen W. Sequential optimization and reliability assessment for probabilistie design[J]. ASME Journal of Mechanical Design, 2004, 126(2): 225- 233.
  • 5Du X, Sudjianto A, Chen W. An integrated framework for optimization under uncertainty using inverse reliability strategy[J]. ASME Journal of Mechanical Design, 2004, 126(4): 562- 570.
  • 6Padmanabhan D. Reliability-based optimization for multi- disciplinary system design [ D]. Indiana: University of Notre Dame, 2003.
  • 7Balling R J, Sobieszczanski J S. An algorithm for solving the system level problem in multilevel optimization [J].Structural Optimization,1995, 9(3/4): 168 -177.
  • 8Bailing R J, Wilkison C A. Execution of multidisciplinary design optimization approaches on common test problems [J]. AIAA Journal, 1997, 35(1): 178-186.
  • 9Shin M K, Park G J. Multidisciplinary design optimization based on independent subspaces[J].Int J Numer Methods Eng, 2005, 64(5): 599-617.
  • 10Kroo I, Altus S, Braun R. Multidisciplinary optimization methods for aircraft preliminary design[R]. AIAA- 1994- 4325,1994.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部