期刊文献+

核极化优化多参数高斯核的特征选择算法 被引量:2

Feature Selection Algorithm of Gaussian Kernel with Multiple Parameters Optimized by Kernel Polarization
下载PDF
导出
摘要 为了解决支持向量机中多特征样本的特征选择问题,鉴于多参数高斯核中的多参数的不同取值可以区分和体现样本中各个特征的重要性差异,在深入分析核极化的几何意义和多参数高斯核特点的基础上,提出了基于核极化梯度优化多参数高斯核的特征选择算法。首先,利用核极化的梯度迭代算法来寻求多参数高斯核的最优多参数值,然后,以优化的多参数大小为基准,进行样本特征的重要性程度强弱标定,进而,采用特征重要性指标来执行SVM的特征选择。最后,将选择出的样本特征子集应用于SVM分类器中。UCI数据的实验结果表明,相较于PCA-SVM、KPCA-SVM和经典SVM方法,所提出算法的分类正确率更高,验证了核极化与多参数模型特征选择算法的有效性。 For the issue of feature selection for support vector machine(SVM),considering that multiple parameters Gaussian kernel can differentiable and emphasize the different importance of each feature,the paper proposed a feature selection algorithm of Gaussian kernel with multiple parameters based on the optimization of the gradient of kernel polarization,at the base of the geometrical meaning of kernel polarization. First,search the optimal parameter values of Gaussian kernel with multiple parameters using the gradient of kernel polarization,which is a kernel evaluation criterion. Then,demarcate the important degree of the sample features as the benchmark of the optimized multiple parameters values,and then,perform the feature selection of SVM by using the importance index. Last,apply the selected feature subset to SVM classifier. The proposed algorithm was tested on several different datasets of UCI. From the experimental results,we can know that the proposed algorithm outperforms PCA-SVM,KPCA-SVM and SVM. In other words,more accurate outcomes of identifying and classification can be obtained by the proposed algorithm,demonstrating the effectiveness of kernel polarization and the feature selection algorithm with multiple parameters.
作者 张文兴 陈肖洁 ZHANG Wen-xing;CHEN Xiao-jie(School of Mechanical Engineering,University of Inner Mongolia Science and Technology,Neimongol Baotou 014010,China)
出处 《机械设计与制造》 北大核心 2018年第5期148-150,154,共4页 Machinery Design & Manufacture
基金 国家自然科学基金项目(21366017) 内蒙古自然科学基金(2016MS0543)
关键词 特征选择 核极化 多参数高斯核 支持向量机 核机器 Feature Selection Kernel Polarization Gaussian Kernel with Multiple Parameters Support Vector Machine KernelMachine
  • 相关文献

参考文献1

二级参考文献25

  • 1刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 2常群,王晓龙,林沂蒙,王熙照,Daniel S.Yeung.支持向量分类和多宽度高斯核[J].电子学报,2007,35(3):484-487. 被引量:10
  • 3MULLER K R,MIKA S,RTSCH G,et al.An introduction to kernel-based learning algorithms[J].IEEE Trans on Neural Networks,2001,12(2):181-202.
  • 4SHAWE-TAYLOR J, CRISTIANINI N.Kernel methods for pattern analysis[M].Cambridge: Cambridge University Press, 2004.
  • 5MIKA S,RATSCH G,WESTON J,et al.Fisher discriminant analysis with kernels[C]//Proc of IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing IX.1999:41-48.
  • 6MIKA S, SCHOLKOPF B, SMOLA A J,et al.Kernel PCA and de-noising in feature spaces[C]//Proc of Advances in Neural Information Processing Systems.Cambridge:MIT Press,1998:536-542.
  • 7VAPNIK V.The nature of statistical learning theory[M].New York:Springer,1995.
  • 8CHAPELLE O,VAPNIK V,MUKHERJEE S.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46(1):131-159.
  • 9CHUNG K M,KAO W C,SUN T,et al.Radius margin bounds for support vector machines with the RBF kernel[J].Neural Computation,2003,15(11):2463-2681.
  • 10ALI S,SMITH-MILES K A.A meta-learning approach to automatic kernel selection for support vector machines[J].Neurocomputing,2006,70(1-3):173-186.

共引文献12

同被引文献16

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部