期刊文献+

滚动轴承退化指标选取方法研究 被引量:2

Method Study of Selecting Indicator of Rolling Bearings Degradation Process
下载PDF
导出
摘要 针对滚动轴承退化过程指标选取问题,提出了一种基于噪声辅助的多维EMD(Noise-Assisted Multivariate EMD)和主成分分析(PCA)相结合来提取退化指标的方法。该方法首先利用NA-MEMD对同源双通道信号和噪声辅助通道信号进行分解得到一系列多元IMF分量,然后采用相关系数准则选取敏感分量重构信号,其次计算出轴承退化过程中重构信号的退化指标序列,再根据序列的单调性和鲁棒性,选择优良指标进行PCA融合,最后把第一主成分作为反映滚动轴承退化过程的最终指标。对PRONOSITS平台提供的全寿命周期的数据进行分析,结果表明,在滚动轴承的退化过程中,较单一指标,基于NA-MEMD和PCA融合的指标能够比较完整的表征滚动轴承的退化过程。 Aiming at how to select proper indicator of rolling bearings degradation process,a method combining noise-assisted multivariate EMD with principle component analysis is proposed to extract the degradation indicator. NA-MEMD is firstly used to decompose the two initial channel and a noise channelsignals to gain a series ofmultiple IMF components,the sensitive ones are reconstructed which is chosen by correlation coefficient criteria. After figuring out degradation indicator sequences of reconstructed signals in the degradation process,some fine indicators are then extracted based on monotonicity and robustness of the sequences. By the use of PCA fusion,the selected indicators are combined. At last,the first principle component is considered as final indicator of rolling bearing's degradation process. The full life cycle data is analyzed which is provided by PRONOSITS platform.It indicates that the indicator based on NA-MEMD and PCA represents the rolling bearing's degradation process better than any signal indicator.
作者 马艳丽 金兵 张学欣 韩捷 MA Yan-li;JIN Bing;ZHANG Xue-xin;HAN Jie(Research Institute of Vibration Engineering,Zhengzhou University,He’ nan Zhengzhou 450001,China)
出处 《机械设计与制造》 北大核心 2018年第5期170-172,176,共4页 Machinery Design & Manufacture
基金 河南省高等学校精密制造技术与工程重点学科开放实验室开放基金资助项目(PMTE201302A)
关键词 滚动轴承 NA-MEMD PCA 退化指标 Rolling Bearing Noise-Assisted Multivariate EMD Principle Component Analysis Degradation Indicator
  • 相关文献

参考文献6

二级参考文献45

  • 1龙思胜,张铁宝,龙峰.希尔伯特—黄变换中拟合过冲和端点飞翼的原因及解决办法[J].地震学报,2005,27(5):561-568. 被引量:12
  • 2高强,杜小山,范虹,孟庆丰.滚动轴承故障的EMD诊断方法研究[J].振动工程学报,2007,20(1):15-18. 被引量:94
  • 3Vachtsevanos G,Lewis F,Roemer M,et al.Intelligent Fault Diagnosis and Prognosis for Engineering Systems[M].Hoboken,NJ:Wile,2006.
  • 4Kacprzynski G J,Sarlashkar A,Roemer M J,et al.Predicting remaining life by fusing the physics of failure modeling with diagnostics[J].JOM Journal of the Minerals,Metals and Materials Society,2004,56:29-35.
  • 5Qiu J,Set B B,Liang S Y,et al.Damage mechanics approach for bearing lifetime prognostics[J].Mechanical Systems and Signal Processing,2002,16:817-829.
  • 6Lundberg G,Palmgren A.Dynamic capacity of rolling bearings[J].Acta Polytechnica Mechanical Engineering Sciences,1947,7 (3):1-7.
  • 7Howard I.A Review of Rolling Element Bearing Vibration Detection,Diagnosis and Prognosis[M].Canberra (Australia):Defence Science and Technology Organisation,1995.
  • 8Norden E H,Zheng S,Steven R L.The empirical decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[A].Proceedings of the Royal Society of London[C].London,England,1998:903-995.
  • 9Dong X,Yongcheng X,Xun C,et al.Life cycle vibration analysis based on EMD of rolling element bearing under ALT by constant stress[A].Proceedings of ICRMS2009[C].Chengdu,China,2009:1 177-1 182.
  • 10Shao Y,Nezu K.Prognosis of remaining bearing life using neural networks[J].Journal of Systems and Control Engineering,2000,214(13):217-230.

共引文献195

同被引文献9

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部