摘要
针对人体运动捕捉(Motion Capture,MOCAP)数据实际采集过程中,由于光线等因素影响而可能出现的同一帧中相邻标记点在时间域上连续缺失的情形,利用MOCAP数据中存在的潜在相关性和同一运动序列中人体骨骼长度不变特性,提出一种新的MOCAP数据失真恢复算法.该算法首先对MOCAP数据进行预处理,使变换后的数据表示的是相邻标记点的相对位置的变化,由此得到人体骨骼长度约束项,再利用稀疏表示和人体骨骼长度约束项进行字典训练,最后利用训练得到的字典对缺失的数据进行恢复.通过实验对比表明该算法在提高缺失点坐标恢复精度的同时,将骨骼长度恢复精度提高到10–4 cm,验证了算法的可行性和有效性.
For the situation that the adjacent markers of Motion Capture(MOCAP) data missing for a period of time due to lights and other factors when practically gathering data, a new MOCAP data recovery algorithm is proposed by using the latent correlation and the skeleton constraint in MOCAP data. The algorithm firstly transforms the MOCAP data to represent the changes of the relative position of adjacent markers to acquire the skeleton constraint term. Then the sparse representation and the skeleton constraint term are used for dictionary training which is utilized to recovery missing data.The experiment results show that the algorithm can improve the recovery accuracy of the coordinates of the missing markers and increase the bone length recovery accuracy to 10–4 cm, and verify the feasibility and effectiveness of the algorithm.
作者
汪亚明
鲁涛
韩永华
WANG Ya-Ming;LU Tao;HAN Yong-Hua(School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)
出处
《计算机系统应用》
2018年第5期17-25,共9页
Computer Systems & Applications
基金
浙江省自然科学基金重点项目(LZ15F020004)
浙江省自然科学基金一般项目(LY17F020034)
机械工程浙江省高校重中之重学科
浙江理工大学重点实验室优秀青年人才培养基金(ZSTUME01B17)