期刊文献+

基于双向关系相似度函数学习的行人再识别 被引量:2

Learning Bidirectional Relationship Similarity Function for Person Re-Identification
下载PDF
导出
摘要 当前的行人再识别在度量学习上采用马氏距离相似度函数,该相似度函数只与特征差分空间有关,忽略了一对行人图像中每个个体的外观特征,针对上述问题,提出了通过学习一个双向关系相似度函数(Bidirectional Relationship Similarity Function,BRSF),来计算一对行人图像的相似度.BRSF不但描述了一对行人图像的互相关关系,而且关联了一对行人图像的自相关关系.该文利用KISSME(Keep It Simple and Straightforward Metric)算法的思想进行相似度函数学习,把一对样本特征的自相关关系和互相关关系用高斯分布来表示,通过把最终高斯分布的比值转换为BRSF的形式,得到一个对背景、视角、姿势的变化具有鲁棒性的相似度函数.在VIPe R,QMUL GRID两个行人再识别数据集上的实验结果表明,本文算法具有较高的识别率,其中在VIPe R数据集上,Rank1达到了53.21%. These dominant algorithms to learn a similarity is the metric learning that learns a Mahalanobis Similarity Function(MSF) to estimate the similarity of a pair of persons. However, the MSF only projects a pair of persons into feature difference space and ignores the appearance of each individual. In this study, we proposed to learn a Bidirectional Relationship Similarity Function(BRSF) that greatly strengthens the modeling ability of the similarity function. BRSF not only represents the cross correlation relationship of a pair of persons, but also describes the auto correlation relationship.We use the ideal of the Keep It Simple Straightforward Metric(KISSME) algorithm to learn a similarity function.Specifically, the auto correlation relationship and cross correlation relationship of a pair of sample features are expressed by Gaussian distribution. Finally, by converting the ratio of the final Gaussian distribution into the form of BRSF, we get a similarity function which is robust to the change of background, viewpoint, and posture. The proposed method is demonstrated on two public benchmark datasets including VIPe R and QMUL GRID, and experimental results show that the proposed method achieves excellent re-identification rates compared with other similar algorithms. Moreover, the reidentification results on the VIPe R dataset with half of dataset sampled as training samples are quantitatively analyzed,and the performance of the proposed method achieves a 53.21% at Rank1(represents the correct matched pair).
作者 张娜 张福星 王强 胡玲玲 桂江生 ZHANG Na;ZHANG Fu-Xing;WANG Qiang;HU Ling-Ling;GUI Jiang-Sheng(School of Information and Electronics, Zhejiang Sci-Tech University, Hangzhou 310018, China)
出处 《计算机系统应用》 2018年第5期33-40,共8页 Computer Systems & Applications
基金 国家自然科学基金(61379036 61502430) 国家自然科学基金委中丹合作项目(61361136002) 浙江省重大科技专项重点工业项目(2014C01047) 浙江理工大学521人才培养计划(20150428)
关键词 行人再识别 距离度量学习 双向关系相似度函数 滑动分块 person re-identification metric learning Bidirectional Relationship Similarity Function (BRSF) slide block
  • 相关文献

参考文献2

二级参考文献53

  • 1Doretto G, Sebastian T, Tu P, et al. Appearance-based person reidentification in camera networks : problem overview and current approaches [J]. Journal of Ambient Intelligence and Humanized Computing, 2011, 2(2) : 127-151. [ DOI: 10. 1007/s12652- 010-0034-y].
  • 2Vezzani R, Baltieri D, Cucchiara R. People reidentification in surveillance and forensics: a survey [ J]. ACM Computing Sur- veys, 2013, 46 ( 2 ) : # 29. [ DOI: 10. 1145/2543581.2 543596 ].
  • 3Ma B P, Jurie F, Su Y. Covariance descriptor based on bio-in- spired features for person re-Identification and face verification [J]. Image & Vision Computing, 2014, 32(6): 379-390. [DOI: 10. 1016/j. imavis. 2014.04. 002].
  • 4Gong S, Cristani M, Yan S, et al. Person Re-Identification [M]. Belin: Springer, 2014: 1-20. [DOI: 10. 1007/978-1- 4471-6296 -4 ].
  • 5Ma B, Su Y, Jurie F. Bieov: a novel image representation for person re-identifieation and face verification [ C ]//Proceedings of the British Maehive Vision Conference. Guildford, UK: BMVA Press, 2012: 1-11. [DOI: 10. 5244/C. 26.57].
  • 6Farenzena M, Bazzani L, Perina A, et al. Person re-identifica- tion by symmetry-driven aeeumulation of local features [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Reeognition. San Francisco: IEEE Press, 2010: 2360-2367. [DOI: 10. ll09/CVPR. 2010.5 539926].
  • 7Prosser B, Zheng W S, Gong S, et al. Person re-identification by support vector ranking [ C ]//Proceedings of the British Machine Vision Conference. Aberystwyth, UK: BMVA Press, 2010, 2(5): 1-11. [DOI: 10.5244/C. 24.21].
  • 8Zheng W S, Gong S, Xiang T. PeFn re-identification by proba- bilistic relative distance comparison [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Provi- dence: IEEE Press, 2011: 649-656. [DOI: 10. ll09/CVPR. 2011. 5995598].
  • 9Layne R, Hospedales T M, Gong S. Person re-identification by attributes [ C ]//Proceedings of the British Machine Vision Con- ference. Surrey, UK: BMVA Press, 2012, 2(3) : 1-9. [DOI: 10. 5244/C. 26. 24].
  • 10Zhao R, Ouyang W, Wang X. Unsupervised salience learning for person re-identification [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE Press, 2013 : 3586-3593. [DOI: 10. 1109/ CVPR. 2013. 460].

共引文献33

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部