期刊文献+

基于DPP改进RANSAC算法的图像拼接 被引量:1

Image Stitching Based on DPP Improved RANSAC Algorithm
下载PDF
导出
摘要 为提高图像拼接时的配准速度和精度,针对鲁棒性模型估计问题,提出一种基于行列式点过程的改进RANSAC算法(Random Sample Consensus).该方法利用行列式点过程抽样法的全局负相关特性对匹配的特征点进行建模,实现抽样点的均匀化和分散化,剔除一些错误匹配点.用行列式点过程抽取的点集作为RANSAC算法的输入来求取变换矩阵.实验结果表明:该算法相对于传统的RANSAC算法,能够保持较高的精度和鲁棒性,减少传统RANSAC算法迭代次数,显著提升图像自动拼接的计算效率. To improve the speed and precision of registration in image stitching, this study proposes a modified RANSAC algorithm based on Determinantal Point Processes(DPP), aiming to tackle the issue of robustness model estimation. This method utilizes global negative correlation of the DPP sampling to model matching feature points, eliminates those incorrect matching points, and therefore realizes the homogenization and decentralization of the sampling. The point set extracted in DPP is used as the input of RANSAC to elicit transformation matrix. Experimental results show that compared with traditional RANSAC algorithm, this algorithm ensures higher accuracy and robustness, which greatly enhances the efficiency of automatic image stitching.
作者 汪旌 张赟 陈爽 WANG Jing;ZHANG Yun;CHEN Shuang(Institute of Graphic and Image, School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018 China;Institute of Zhejiang Radio and Television Technology, Zhejiang University of Media and Communications, Hangzhou 310018 China;Institute of Information Science and Engineering, Shenyang University of Technology, Shenyang 110023, China)
出处 《计算机系统应用》 2018年第5期112-118,共7页 Computer Systems & Applications
基金 国家自然科学基金(61602402) 浙江省公益技术研究项目(2016C31085)
关键词 RANSAC算法 行列式点过程 配准 图像拼接 特征点匹配 概率分布 RANSAC algorithm Determinantal Point Process (DPP) registration image stitching lbature points matching probability distributions
  • 相关文献

参考文献3

二级参考文献48

  • 1陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 2向长波,刘太辉,宋建中.基本矩阵的鲁棒贪心估计算法[J].计算机辅助设计与图形学学报,2007,19(5):651-655. 被引量:11
  • 3ZHOU H Y, PATRICK R G, ANDREW M. Esti- mation of epipolar geometry by linear mixed-effect modelling[J]. Neurocomputing, 2009, 72(16-18): 3881-3890.
  • 4ONAY U, THORSTEN T, HELLWARD B, et al.. Algebraic error analysis of collinear feature points for camera parameter estimation[J]. Com- puter Vision and Image Understanding, 2011, 115 (4) : 467-475.
  • 5SERGIU N, CATALIN G, COSMIN M. Impro- ving accuracy {or ego vehicle motion estimation u- sing epipolar geometry[C]. Proceedings of the 12th International IEF.E Conference on Intelligent Transportation Systems, St. Louis, MO, USA, 2009 : 596-602.
  • 6LI Q, XING G M. New similarity measures of localities for a two--layer matching scheme and esti- mation of fundamental matrices[J]. Neurocomput- ing, 2010, 73(16-18).. 3114-3122.
  • 7ARMANGUE X, SALVI J. Overall view regarding fundamental matrix estimation[J]. Image and Vi- sion Computing, 2003, 21 : 205-220.
  • 8ZHANG ZH Y. Determining the epipolar geome- try and its uncertainty., a review[J]. International Journal of Computer Vision, 1998, 27 (2) : 161- 198.
  • 9HARTLEY R. In defense of the eight-point algo- rithm[J]. IEEE Transactions on Pattern Recogni- tion and Machine Intelligence, 1997, 19(6): 580- 593.
  • 10HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision[M]. London: Cam- bridge University Press, 2000.

共引文献11

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部