期刊文献+

基于最小二乘支持向量机的无线网络信道检测 被引量:3

Channel Detection of Wireless Networks Based on Least Squares Support Vector Machines
下载PDF
导出
摘要 为了获得理想的无线网络信息检测结果,提出了基于最小二乘支持向量机的无线网络信道机制.首先对当前无线网络信道检测的研究现状进行分析,并建立无线网络信道检测的假设模型,然后采用最小二乘支持向量机构建无线网络信道检测模型,并通过粒子群算法对最小二乘支持向量机参数进行优化,最后在Matlab 2014平台上进行了无线网络信道检测的仿真实验,以验证无线网络信道检测的有效性.结果表明,最小二乘支持向量机获得了高精度的无线网络信道检测结果,无线网络的数据传输成功率得以改善,大幅度降低了数据传输的误码率,在相同实验条件下,无线网络信道检测结果明显高于当前经典检测机制,验证本文机制的优越性. In order to obtain the ideal wireless network information detection results, a wireless network channel mechanism based on Least Squares Support Vector Machines(LSSVM) is proposed. Firstly, the research on the current situation of wireless network channel detection is analyzed, and the hypothesis model of wireless network channel detection is established. Then, using the least squares support vector construction of wireless network channel detection model, the particle swarm algorithm of LSSVM parameters are optimized. Finally, the wireless network channel detection experiments on MATLAB 2014 platform are performed in order to verify the effectiveness of the wireless network channel detection. The results show that the LSSVM for the wireless network channel achieves high precision detection results, the wireless network data transmission success rate is improved, and the error rate of data transmission is greatly reduced. Under the same experimental conditions, the wireless network channel detection results are significantly higher than that of the current classical detection mechanism, which verifies the superiority of the proposed model.
作者 周向军 ZHOU Xiang-Jun(School of Information, Guangdong Teachers College of Foreign Language and Arts, Guangzhou 510507, China)
出处 《计算机系统应用》 2018年第5期151-155,共5页 Computer Systems & Applications
基金 广东省外语艺术职业学院科研团队资助基金(2014KYTD03)
关键词 无线网络 信道检测 最小二乘支持向量机 数据传输误码率 假设模型 wireless networks channel detection least squares support vector machines data transmission errorrate assumed model
  • 相关文献

参考文献11

二级参考文献100

  • 1陈丹,黄根全.接收机直接中频采样的方法与实现[J].电声技术,2006,30(5):33-36. 被引量:4
  • 2姚奇富,李翠凤,马华林,张森.灰色系统理论和马尔柯夫链相结合的网络流量预测方法[J].浙江大学学报(理学版),2007,34(4):396-400. 被引量:44
  • 3KATFI S, RAHUL H, HU W, et al. XORs in the air: practical wireless network coding[A]. Proc of ACM SIGCOMM2006[C]. Pisa, Italy, 2006. 243-254.
  • 4KATFI S, GOLLAKOTA S, KATABI D. Embracing wireless interference: analog network coding[A]. Proc of ACM SIGCOMM2007[C]. Kyoto, Japan, 2007.397-408.
  • 5ZHANG S, LIEW S C, LAMP P. Hot topic: physical-layer network coding[A]. Proc of ACM Mobicom[C]. Los Angeles, CA, 2006. 358-365.
  • 6LOUIE R H Y, LI Y, VUCETIC B. Practical physical layer network coding for two-way relay channels: performance analysis and comparison[J]. IEEE Trans on Wireless Communications, 2010, 9(2): 764-777.
  • 7POPOVSKI P, YOMO H. Physical network coding in two-way wireless relay channels[A]. Proc of IEEE ICC2007[C]. Glasgow, Scotland, 2007. 707-712.
  • 8KOIKE-AKINO T, POPOVSKI P, TAROKH V. Optimized constellations for two-way wireless relaying with physical network coding[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(5): 733-787.
  • 9PAN C, ZHENG J. Mapping codebook-based physical network coding for asymmetric two-way relay channels[A]. Proc of IEEE ICC2010[C] CapeTown, South Africa, 2010. 1-5.
  • 10CUI T, HO T, KLIEWER J. Memoryless relay strategies for two-way relay channels[J]. IEEE Trans on Communications, 2009, 57(10): 3132-3143.

共引文献32

同被引文献25

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部