期刊文献+

兼顾两种模式核心机驱动风扇级气动优化设计 被引量:3

Aerodynamic optimization design of core driven fan stage on balance of two modes
原文传递
导出
摘要 提出兼顾两种模式核心机驱动风扇级气动设计方法。将S2流面通流计算与遗传算法相结合,寻找最优进口导叶(IGV)出口气流角、关闭角度、单双外涵压比沿叶高分布;实现在转子气动设计时兼顾两种模式。根据IGV基础叶型弯度、安装角对单双外涵流动损失影响研究,确定可调IGV关键参数,实现在IGV气动设计时兼顾两种模式。采用多点优化进行静子叶型优化设计,实现在静子气动设计时兼顾两种模式。对所设计的核心机驱动风扇级进行三维流场计算,结果表明:两种模式在满足总压比和质量流量前提下,单、双外涵模式等熵效率分别达到88.05%和87.17%,且稳定裕度分别达到15.65%和16.28%。 An aerodynamic design method was proposed for core driven fan stages on balances of the single and double bypass modes.Combining the S2 stream surface throughflow calculation with a genetic algorithm,the optimal inlet guide vane(IGV)outlet angle,closed angle and pressure ratio distributions in the two modes along the blade spans were found,achieving the balance on the rotor aerodynamic design.The key geometric parameters of the variable IGV were determined according to the study on the influences of the IGV profile camber and installation angle on flow losses in the two modes,achieving the balance on the IGV design.The stator blade design was conducted by using multi-point optimization method,achieving the balance on the stator aerodynamic design.Three-dimensional flow fields of a designed core driven fan stage were numerically simulated,and the results showed that the isentropy efficiency at the design point reached 88.05% and 87.17%in single and double bypass mode,respectively under the premise of satisfying the total pressure ratio and mass flow rate in two modes,and the stability margins in the two modes reached 15.65%and 16.28%,respectively.
作者 曹晖 周正贵 胡骏 彭国峰 屠宝锋 CAO Hui;ZHOU Zhenggui;HU Jun;PENG Guofeng;TU Baofeng(College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2018年第3期717-728,共12页 Journal of Aerospace Power
关键词 核心机驱动风扇级 变循环发动机 优化设计 S2流面 流场数值模拟 core driven fan stage variable cycle engine optimization design S2 stream surface~ numerical simulation of flow field
  • 相关文献

参考文献9

二级参考文献81

  • 1方昌德.变循环发动机[J].燃气涡轮试验与研究,2004,17(3):1-5. 被引量:71
  • 2周正贵.压气机叶片端壁附面层区叶型优化设计[M].南京航空航天大学,2000..
  • 3Fishbaeh L H,Stitt L E,Stone J R,et al. NASA research in supersonic propulsion A decade of progress[R]. AIAA-82-1048.
  • 4Rallabhandi S K, Mavris D N. Simultaneous airframe and propulsion cycle optimization for supersonic aircraft design [R]. AIAA-2008-143.
  • 5French M W,Allen G L. NASA VCE test bed engine aerodynamic performance characteristics and results[R]. AIAA-81-1594.
  • 6Vdoviak J W, Knott P R, Ebacker J A. Aerodynamic/acoustic performance of YJ101/double bypass VCE with eoannualr plug nozzle[R]. NASA CR-159869,1981.
  • 7Vdoviak J W,Ebacker J A. VCE test bed engine for supersonic cruise research[C]//NASA Langley Research Center Supersonic Cruise Res.United States: NASA, 1979: 347-356.
  • 8Morris S J,Coen P G,Geiselhart K A. Performance potential of an advanced technology Mach 3 turbojet engine installed on a conceptual high speed civil transport[R]. NASA Technical Memorandum, November 4144,1989.
  • 9Krebs J N, Allan R D. Supersonic propulsion--1970 to 1977[R]. AIAA-77-832.
  • 10Martin S. Research on TBCC propulsion for a Ma 4. 5 supersonic cruise airliner[R]. AIAA-2006-7976.

共引文献125

同被引文献26

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部