摘要
采用金属有机物化学气相沉积(MOCVD)方法,在6英寸(1英寸=2.54 cm)Si(111)衬底上,使用多层不同Al摩尔组分的AlGaN插入层技术,成功生长出厚度为2.9μm无裂纹(扣除边缘2 mm)的GaN外延层,解决了大尺寸外延片的翘曲度问题,并在此基础上生长了全结构的高电子迁移率晶体管(HEMT)外延片。采用X射线双晶衍射对外延材料结构进行了表征。Hall测试结果表明,HEMT外延材料的迁移率为2 080 cm^2/(V·s),方块电阻为279.8Ω/,电荷面密度为1.07×10^(13)cm^(-2)。采用喇曼光谱仪对GaN的应力进行了表征,GaN的喇曼E2(h)峰位于567.02 cm^(-1),表面受到的张应力为0.170 6 GPa,由于GaN外延层受到的张应力很小,说明插入多层AlGaN后应力已经释放。汞探针C-V测试二维电子气浓度较Hall测试结果偏低,可能是在C-V测试时肖特基势垒接触会降低载流子浓度。
Based on the metal organic chemical vapor deposition( MOCVD) method,a 2. 9 μmthick crack-free GaN epitaxial layer( excluding the region within 2 mm away from the edge) on the 6-inch( 1 inch = 2. 54 cm) Si( 111) substrate was successfully grown by inserting multilayer AlGaN layers with different Al mole fraction,solving the warp problem of large-size epitaxial wafer. In addition,the whole epitaxial structure of high electron mobility transistor( HEMT) was also grown,and the structure of the epitaxial material was characterized by double crystal X-ray diffraction. The Hall measurement results show that the electron mobility and the surface charge density of the HEMT structure are 2 080 cm^2/( V·s)and 1. 07 × 10^(13) cm^(-2),respectively,resulting in the sheet resistance of 279. 8 Ω/□. The stress of GaN was characterized by Raman spectrometer. The Raman E2( h) peak of GaN is 567. 02 cm^(-1),and the surface tensile stress is 0. 170 6 GPa. The very small tensile stress of GaN epitaxial layer indicates that the stress of GaN epilayer is released with the insertion of AlGaN multilayers. The two-dimensional electron gas concentration obtained by Hg-probe C-V measurement is lower than that by the Hall measure-ment,which may be caused by the reduction of carrier concentration due to the Schottky barrier contact in the C-V measurement.
作者
白欣娇
袁凤坡
王文军
房玉龙
李晓波
李浩
Bai Xinjiao;Yuan Fengpo;Wang Wenjun;Fang Yulong;Li Xiaobo;Li Hao(Beijing METDA Electronic Technology Development Co. , Ltd. , Beijing 100036, China;The 13's Research Institute, CETC, Shijiazhuang 050051, China;Science and Technology on ASIC Laboratory, Shifiazhuang 050051, China)
出处
《半导体技术》
CAS
CSCD
北大核心
2018年第5期359-363,368,共6页
Semiconductor Technology
基金
北京市科技重大专项资助项目(Z171100002017012)