摘要
设B(H)是复Hilbert空间H上的有界线性算子全体组成的Banach代数。证明B(H)上的可加满射Φ双边保持算子乘积是非零部分等距的充要条件是存在H上的酉算子或共轭酉算子U以及常数λ∈T,使得Φ(X)=λUXU~*,■X∈B(H),其中T表示复平面C上的单位圆周。同时,刻画了保持两个算子Jordan三乘积是非零部分等距的可加映射。
Let B (H) be the Banach algebra of all bounded linear operators on a complex space H. It is proved that an additive surjective map ucts of two operators in both directions, if on Ф (H) preserves nonzero partial isometries of prod and only if there is a unitary operator or anti-unitary operator U on H, such that Ф (X)=λUXU , V X∈B(H) for some constant λ with λ∈T, where T is the unit circle in the complex plane C. Moreover, characterizing additive surjective mappings pre serving Jordan triple products of two operators are also obtained.
作者
刘文聪
史维娟
吉国兴
LIU Wencong;SHI Weijuan;JI Guoxing(School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China)
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第3期42-47,共6页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金(11371233)
关键词
可加满射
部分等距
算子乘积
additive maps
partial isometries
products of operators