期刊文献+

保持算子乘积部分等距的可加映射

Additive maps preserving operator pairs whose products are partial isometries
下载PDF
导出
摘要 设B(H)是复Hilbert空间H上的有界线性算子全体组成的Banach代数。证明B(H)上的可加满射Φ双边保持算子乘积是非零部分等距的充要条件是存在H上的酉算子或共轭酉算子U以及常数λ∈T,使得Φ(X)=λUXU~*,■X∈B(H),其中T表示复平面C上的单位圆周。同时,刻画了保持两个算子Jordan三乘积是非零部分等距的可加映射。 Let B (H) be the Banach algebra of all bounded linear operators on a complex space H. It is proved that an additive surjective map ucts of two operators in both directions, if on Ф (H) preserves nonzero partial isometries of prod and only if there is a unitary operator or anti-unitary operator U on H, such that Ф (X)=λUXU , V X∈B(H) for some constant λ with λ∈T, where T is the unit circle in the complex plane C. Moreover, characterizing additive surjective mappings pre serving Jordan triple products of two operators are also obtained.
作者 刘文聪 史维娟 吉国兴 LIU Wencong;SHI Weijuan;JI Guoxing(School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China)
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期42-47,共6页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金(11371233)
关键词 可加满射 部分等距 算子乘积 additive maps partial isometries products of operators
  • 相关文献

参考文献4

二级参考文献28

  • 1JianLianCUI,JinChuanHOU.Linear Maps Preserving Idempotence on Nest Algebras[J].Acta Mathematica Sinica,English Series,2004,20(5):807-820. 被引量:3
  • 2崔建莲,侯晋川.Β(H)上Jordan同构的一个代数不变量:幂等元的集合[J].中国科学(A辑),2005,35(12):1424-1437. 被引量:1
  • 3Bresar M, Semrl P. Mappings which preserve idempo- tents,local automorphisms, and local derivations[J]. Ca- nadian Journal of Mathematics, 1993,45 (3) : 483-496.
  • 4Bresar M, Semrl P. On local automorphisms and map- pings that preserve idempotents[J]. Studia Mathemati- ca, 1995,113(2) : 101-108.
  • 5Semrl P. Maps on idempotent operators[EB/OL], http: ,// www. fmf. uni-lj, si/semrl/preprints/poland. PDF.
  • 6Semrl P. Linear maps that preserve the nilpotent opera- tors [ J ]. Acta Scientiarum Mathematicarum ( Szged ), 1995,61 .. 523-534.
  • 7Wang Meili, Fang Li,Ji Guoxing. Linear maps preserving idempotency of products or triple Jordan products of op- erators[J]. Linear Algebra and its Applications, 2008, 429 ( 1 ) : 181-189.
  • 8Uhlhorn U. Representation of symmetry transforma- tions in quantum mechanies[M]. Stockholm.. Ark Fysik 1963:307-340.
  • 9Wigner E. Group theory and its application to the quan- tum theory of atomic spectra[J]. New York Academic Press Inc. ,1959.
  • 10Molnr L. On certain automorphisms of sets of partial i- sometries[J]. Arehiv der Mathematik,2002,78 : 43-50.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部