摘要
一个平面图G的边面色数χ_(ef)(G)是最小的颜色数,使得G中任意两条相邻的边、两个相邻的面、以及两个关联的边和面都染不同的颜色.本文证明了,若G是?≥16的2-连通平面图,则χ_(ef)(G)=?.这改进了已知结果:若G是?≥24的2-连通平面图,则χ_(ef)(G)=?.
The edge-face chromatic number χef(G) of a plane graph G is the least number of colors such that any two adjacent edges, adjacent faces, and incident edge and face have different colors. In this paper, we show that if G is a 2-connected simple plane graph with maximum degree △≥16, then χef(G) = △. This improves a known result that if G is a 2-connected simple plane graph with△≥24, then χef(G) = △.
作者
胡晓雪
王艺桥
王维凡
Xiaoxue Hu;Yiqiao Wang;Weifan Wang
出处
《中国科学:数学》
CSCD
北大核心
2018年第5期671-686,共16页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11371328
11671053
11701541和11771402)资助项目
关键词
平面图
边面染色
2-连通
最大度
plane graph, edge-face coloring, 2-connected, maximum degree