期刊文献+

基于改进人工鱼群算法的模糊时间序列模型 被引量:2

Fuzzy Time Series Model Based on Modified Artificial Fish School Algorithm
下载PDF
导出
摘要 近年来,经过人们对模糊时间序列模型大量的研究后,发现模糊区间的划分以及模糊关系的构建是影响模糊时间序列模型预测精度最关键的两个因素。文章针对目前模糊时间序列模型在论域划分中存在的问题,提出将人工鱼群算法(AFSA)用于模糊时间序列模型的论域划分中;并利用最小均方误差(MSE)确定最优的预测结果;最后为了显示所提出方法的有效性,将该方法用于Alabama大学注册人数的预测,结果显示该方法的预测精度更高。 In recent years, as the fuzzy time series model has been studied for a long time, it inds that the division of fuzzy interval and the structure of fuzzy relation are two most critical factors affecting the prediction accuracy of the fuzzy time series model. To solve the domain partition in fuzzy time series model,this paper proposes artificial fish school algorithm(AFSA) to tackle the domain partition problem in fuzzy time series model; and utilizes minimum mean square error(MSE) to determine the optimal forecast results.Finally, in order to show the effectiveness of the proposed method, the paper applies this method to forecast the enrollment of Alabama University. The results show a higher prediction accuracy of the method.
作者 鲜思东 张建锋 Xian Sidonga;Zhang Jianfengb(a. Key Laboratory of Intelligent Analysis and Decision on Complex System;b.School of Automation, Chongqing University of Posts and Telecommunications,Chongqing 400065, Chin)
出处 《统计与决策》 CSSCI 北大核心 2018年第8期68-72,共5页 Statistics & Decision
基金 重庆市教委科学技术研究项目(KJ120515) 重庆市研究生教育教学改革研究项目(YJG143010) 重庆市研究生科研创新项目(CYS17227 CYS16172)
关键词 模糊时间序列 人工鱼群算法 模糊区间 解模糊 fuzzy time series artificial fish school algorithm fuzzy interval defuzzification
  • 相关文献

参考文献2

二级参考文献15

  • 1戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 2Song Q, Chissom B S. Fuzzy time series and its models[J]. Fuzzy Sets and Systems, 1993, 54(1): 269-277.
  • 3Song Q, Chissom B S. Forecasting enrollments with fuzzy time series[J]. Fuzzy Sets and Systems, 1993, 54(1): 1-10.
  • 4Song Q, Chissom B S. Forecasting enrollments with fuzzy time series, Part II[J]. Fuzzy Sets and Systems, 1994, 62(1): 1-8.
  • 5Chen S M. Forecasting enrollments based on fuzzy time- series[J]. Fuzzy Sets and Systems, 1996, 81(3): 311-319.
  • 6Hwang Jeng-ren, Chert Shyi-ming, Lee Chia-hoang. Handling forecasting problems using fuzzy time series[J]. Fuzzy Sets and Systems, 1998, 100(2): 217-228.
  • 7Huarng K. Heuristic models of fuzzy time series for forecasting[J]. Fuzzy Sets and Systems, 2001, 123(3)': 369- 386.
  • 8Huamg K, Yu T H-K. Ratio-based lengths of intervals to improve fuzzy time series forecasting[J]. IEEE Trans on Systems, Man and Cybernetics, Part B: Cybernetics, 2006, 36(2): 328-340.
  • 9Li S-T, Cheng Y-C, Lin S-Y. A FCM-based deterministic forecasting model for fuzzy time series[J]. Computers and Mathematics with Applications, 2008, 56(12): 3052-3063.
  • 10Huarng K, Yu T H K. The application of neural networks to forecast fuzzy time series[J]. Physica A, 2006, 363(2): 481-491.

共引文献898

同被引文献1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部