期刊文献+

基于结构稀疏度和块差异度的目标移除图像修复

Image Inpainting for Object Removal Based on Structure Sparsity and Patch Difference
下载PDF
导出
摘要 针对目标移除修复方法中存在的修复顺序不合理以及错误匹配问题,提出一种基于结构稀疏度和块差异度的图像修复方法。首先,在优先权中增加块的结构稀疏度计算,使优先权不仅依赖于目标块的几何特征,而且可以反映其邻域特征,提高了对目标块所处区域特征的辨识度,从而使修复顺序更加合理。其次,定义目标块与样本块之间的差异度,并在此基础上定义新的匹配规则,不仅对已存在像素之间的相似程度进行衡量,而且对已存在像素与填充像素之间的差异程度进行衡量,从而有效防止错误匹配以及错误累积。实验结果表明,该方法可以有效提高图像的修复效果,使修复图像更加符合视觉一致性要求。 Aiming at the problems of unreasonable filling order and the mismatch error in the image inpainting for object removal,an image inpainting method based on structure sparsity and patch difference was proposed.Firstly,the structure sparsity of the patch is added in the priority computation,because not only the priority depends on the geometric characteristics of target patch,but also its neighborhood characteristics are reflected,which can improve the identification of the regional characteristics of target patch,so that the filling order is more reasonable.Secondly,the difference between the target patch and the exemplar patch is defined,and the new matching rule is defined on the basis of this.In the new matching rule,it not only measures the similarity degree between existing pixels,but also measures the difference degree between existing pixels and filled pixels,thus effectively preventing mismatch error and error accumulation.Experimental results show that the proposed method can effectively improve the restoration effect,and make the restored images more consistent with the visual consistency requirements.
作者 张雷 康宝生 ZHANG Lei;KANG Bao-sheng(Department of Public Computer Teaching,Yuncheng University, Yuncheng, Shanxi 044000, China;Department of Information Science and Technology,Northwest University, Xi'an 710127,China)
出处 《计算机科学》 CSCD 北大核心 2018年第5期255-259,共5页 Computer Science
基金 国家自然科学基金项目(61272286) 陕西省自然科学基础研究计划项目(2014JM8346) 运城学院科研项目(CY-2016019)资助
关键词 结构稀疏度 块差异度 目标移除 图像修复 Structure sparsity Patch diffcrcncc Objcct rcmoval lmagc inpainting
  • 相关文献

参考文献4

二级参考文献38

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2彭宏京,侯文秀,宫宁生.改进的基于样例修补的目标移除方法[J].计算机辅助设计与图形学学报,2006,18(9):1345-1349. 被引量:13
  • 3朱为,李国辉,涂丹.纹理合成技术在旧照片修补中的应用[J].计算机工程与应用,2007,43(28):220-222. 被引量:8
  • 4张红英,彭启琮.数字图像修复技术综述[J].中国图象图形学报,2007,12(1):1-10. 被引量:160
  • 5Bertalmio M, Sapiro G, Caselles V, et al.lmage inpainting[C]// Proceedings of International Conference on Computer Graphics and Interactive Techniques,New Orleans, Loui- siana, USA, 2000:417-424.
  • 6Rudin L, Osher S, Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D, 1992,60: 259-268.
  • 7Criminisi A, Perez P, Toyama K.Object removal by exemplar- based inpainting[C]//Proceedings of Conference on Com- puter Vision and Pattern Recognition, Madison, Wiscon- sin ,USA, 2003 : 721-728.
  • 8Criminisi A, Perez P, Toyama K.Region filling and object removal by exemplar-based image inpainting[J].IEEE Trans- actions on Image Processing,2004, 13(9) : 1200-1212.
  • 9Tang F, Ying Y T, Wang J,et al.A novel texture synthesis based algorithm for object removal in photographs[C]// Proceedings of 9th Asian Computing Science Confer- ence, Chiang Mai, Thailand, 2004 : 248-258.
  • 10Sun J, Yuan L, Jia J Y, et al.lmage completion with structure propagation[J].ACM Trans on Graphics, 2005, 24(3) : 861-868.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部