期刊文献+

改进频率调谐显著算法在疵点图像分割中的应用 被引量:6

Segmentation of fabric defect images based on improved frequency-tuned salient algorithm
下载PDF
导出
摘要 为提高织物疵点分割精度,提出了一种用于织物疵点图像分割的改进频率调谐显著(FT)算法。首先,利用织物疵点和背景区域透光率的不同,将光源和相机分别置于织物两侧来获取图像,提高疵点区域对比度;其次,应用非局部均值滤波器(NLM)替代FT算法中的高斯滤波器,增强对背景纹理的平滑和降噪能力;研究发现NLM滤波器中滤波参数对疵点分割精度影响较大,提出了基于平均最大类间方差的参数优化方法;然后,将改进FT算法应用于疵点图像预处理,进一步提高疵点对比度;最后,使用最大类间方差法对疵点显著图进行分割。对2种不同织物疵点图像的分割实验结果表明,使用改进FT算法对粗经、竹节、结头、断纬、油污和破洞等常见疵点图像进行预处理,可显著提高疵点分割精度。 In order to improve the precision of fabric defects segmentation,an improved frequency-tuned salient(FT) algorithm is proposed for the segmentation of fabric image.Firstly,the light source and camera were placed on both sides of the fabric to obtain the image,and the contrast ratio of defect area was strengthened by the difference of transmittance between normal area and defect area.Secondly,the non-local mean filter(NLM) was used instead of the Gauss filter in the FT algorithm to enhance the cap ability of texture smoothing and denoising; and it is found that the NLM filter parameter has great influence on the accuracy of image segmentation.A method of parameter optimization using the average of inter-class maximum variance was proposed.Then,the improved FT algorithm was applied to the prepocessing of images to strengthen the contrast ratio of fabric defect area.Finally,OTSU algorithm was used to segment salient image of fabric defect.The experiments of image segmentation were carried out for two different fabrics.The experimental result shows that the segmentation precision of fabric defects,including slab yarn,knot,broken warp,oil stain,hole and so on,can significantly increase with the improved FT algorithm.
作者 徐启永 胡峰 王传桐 吴雨川 XU Qiyong;HU Feng;WANG Chuantong;WU Yuchuan(College of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan, Hubei 430074, China;Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan, Hubei 430074, China)
出处 《纺织学报》 EI CAS CSCD 北大核心 2018年第5期125-131,共7页 Journal of Textile Research
基金 国家自然科学基金项目(51205295 51271008) 湖北省数字化纺织装备重点实验室项目(DTL2017005)
关键词 织物疵点 非局部均值滤波 频率调谐显著算法 图像分割 fabric defect non-local mean filter frequency-tuned salient algorithm image segmentation
  • 相关文献

参考文献6

二级参考文献47

  • 1Xu R,Chen Y W.Wavelet-based multiresolution medical image regis-tration strategy combining mutual information with spatial information[J].International Journal of Innovative Computing,Information and Control,2007,3(2):285-296.
  • 2Manjon J V,Carbonell C J,Lull J J,et al.MRI denoising using non-lo-cal means[J].Medical Image Analysis,2008(12):514-523.
  • 3Buades A,Coll B,Morel J M.A non-local algorithm for image denoising[C]//IEEE CVPR,San Diego,California,IEEE Press,2005:60-65.
  • 4Kervrann C,Boulanger J.Optimal spatial adaptation for patch-based image denoising[J].IEEE Transactions on Image Processing,2006,15(10):2866-2878.
  • 5CoupéP,Yger P,Prima S,et al.An optimized blockwise nonlocal means denoising filter for3-D magnetic resonance images[J].IEEE Transactions on Medical Imaging,2008,27(4):425-441.
  • 6Avanaki A N,Diyanat A,Sodagari S.Optimum parameter estimation for non-local means image de-noising using corner information[C]//The 9 th International Conference on Signal Processing,Beijing,China,IEEE Press,2008:861-863.
  • 7Zimmer S,Didas S,Weickert J.A rotationally invariant block matching strategy improving image denoising with non-local means[C]//Interna-tional Workshop on Local and Non-Local Approximation in Image Pro-cessing,Lausanne,Switzerland,2008.
  • 8Smith S M,Brady J M.SUSAN-A new approach to low level image pro-cessing[J].International Journal of Computer Vision,1997,23(1):45-78.
  • 9Zhang Y K,Zhang Y J,Lu H B.Statistical sinogram smoothing for low-dose CT with segmentation-based adaptive filtering[J].IEEE Transac-tions on Nuclear Science,2010,57(5):2587-2598.
  • 10贾云得.机器视觉[M].北京:科学出版社,2002..

共引文献48

同被引文献37

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部