期刊文献+

采用在线评论的景点个性化推荐 被引量:9

Attractions Personalized Recommendations Using Online Reviews
下载PDF
导出
摘要 通过对旅游网站的景点评论进行情感分析,综合利用自然语言处理技术和领域本体构建技术,准确把握游客对旅游目的地的满意度和需求;将群体智慧和个人偏好有效地结合,为游客出行制定合理的个性化推荐策略.实验结果表明:所提出的推荐策略能够有效地将碎片化的游客评论数据转化为对其他游客出行地选择的辅助信息,提高了游客获取旅游知识的效率,真实地反映游客的旅游感受,为游客景点选择提供参考. Through analyzing attractions online reviews of travel sites based on sentiment analysis,this paper comprehensively utilizes natural language processing technology and domain ontology construction technology,accurately grasps the tourist satisfaction and the demand for tourism destination,effectively combines the wisdom of crowds and personal preference,and sets reasonable personalized recommendation for tourists travel strategy.The experimental results show that the proposed strategy can effectively translate fragmented visitors review data into ancillary information of tourists traveling,improve the efficiency of the tourists to obtain knowledge,truly reflect the tourists feel,and provide the reference for tourist choosing attractions.
作者 王少兵 吴升 WANG Shaobing;WU Sheng(Spatial Information Research Center of Fujian, Fuzhou University, Fuzhou 350003, Chin)
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2018年第3期467-472,共6页 Journal of Huaqiao University(Natural Science)
基金 国家政务大数据应用工程技术研究中心培育项目(2016L3007) 福建省科技创新平台建设项目(2015H2001)
关键词 旅游网站 在线评论 情感分析 个性化推荐 travel sites online reviews sentiment analysis personalized recommendations
  • 相关文献

参考文献8

二级参考文献300

  • 1韦素云,肖静静,业宁.基于联合聚类平滑的协同过滤算法[J].计算机研究与发展,2013,50(S2):163-169. 被引量:12
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 4Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 5Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 6Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 7Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 8Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 9Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 10Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.

共引文献1359

同被引文献76

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部