期刊文献+

基于CPSO-RVM的锂电池剩余寿命预测方法 被引量:13

Approach for Lithium-ion Battery RUL Prognostics Based on CPSO-RVM
下载PDF
导出
摘要 针对锂电池健康状况测量数据中经常伴随着各种类型及大小的噪声,本文提出了一种基于小波去噪和混沌粒子群-相关向量机的锂电池剩余寿命预测方法。执行小波二次降噪,削弱测量数据中的大噪声信号及消除测量数据中的小噪声信号,从而提取原始数据;将经混沌粒子群算法优化的相关向量机算法用于估计锂电池各个充放电周期健康状况的变化轨迹,并预测锂电池的剩余寿命。基于美国国家航空航天局提供的锂电池测量数据,对提出的方法进行了有效性验证。 On account of the measured battery state of health (SOH) data are often subject to different levels of noise pollution, a battery remaining useful life (RUL) prognostics approach is presented based on wavelet denoising and CPSO-RVM in the paper. Wavelet denoising is performed twice with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by chaos particle swarm optimization (CPSO) algorithm is utilized to estimate the trend of battery SOH variation trajectory and predict the battery RUL based on the denoised data. RUL prognostic experiments using battery data provided by NASA are conducted and the effectiveness of the presented approach is validated.
作者 张朝龙 何怡刚 袁莉芬 Zhang Chaolong;He Yigang;Yuan Lifen(School of Physics and Electronic Engineering, Anqing Normal University, Anqing 246011, China;School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2018年第5期1935-1940,共6页 Journal of System Simulation
基金 国家自然科学基金(51607004 51577046 51637004) 国家重点研发计划(2016YFF0102200) 安徽省自然科学基金(1608085QF157)
关键词 锂电池 剩余寿命 健康状况 小波降噪 相关向量机 混沌粒子群 lithium-ion battery RUL SOH wavelet denoising RVM CPSO
  • 相关文献

参考文献1

二级参考文献16

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//IEEE International Conference on Neural Networks, Nov 27-Dec 01, 1995, Perth, WA, Australia. USA: IEEE, 1995: 1942-1948.
  • 4Selvan K V, Muhammamrnad M S, Masra S M W, et al. DNA words based on an enhanced algorithm of multi-objective particle swarm optimization in a continuous search space [C]//2011 International Conference on Electrical, Control and Computer Engineering (INECCE). June 21-22, 2011, Pahang, Malaysia. USA: IEEE, 2011: 154-159.
  • 5Zielinski K, Laur R. Adaptive parameter setting for a multi- objective particle swarm optimization algorithm [C]//IEEE Congress on Evolutionary Computation, Sept 25-28, 2007, Singapore. USA: IEEE. 2007: 3019-3026.
  • 6Daneshyari M, Yen G G. Cultural-Based Multiobjective Particle Swarm Optimization [J]. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics (S1083-4419), 2011, 41(2): 553-567.
  • 7Minh-Trien Pham, Diahai Zhang, Chang Seop Koh. Multi-Guider and Cross-Searching Approach in Multi-Objective Particle Swarm Optimization for Electromagnetic Problems [J]. IEEE Transactions on Magnetics (S0018-9464), 2012, 48(2): 539-542.
  • 8Ying Song, Chen Zeng-Qiang, Yuan Zhu-Zhi. New Chaotic PSO- Based Neural Network Predictive Control for Nonlinear Process [J]. IEEE Transactions on Neural Networks (S 1045-9227), 2007, 18(2): 595-601.
  • 9Zhou Ke-Liang, Qin Jie-Qiong. PID controller parameters tuning of main steam temperature based on chaotic particle swarm optimization [C]// IEEE International Conference on Computer Science and Automation Engineering (CSAE), June 10-12, 2011, Shanghai, China. USA: IEEE, 2011: 647-650.
  • 10Alizadeh G, Baradaraannia M, Yazdizadeh P, et al. Serial configuration of genetic algorithm and particle swarm optimization to increase the convergence speed and accuracy [C]// International Conference on intelligent Systems Design and Applications (ISDA), Nov 29-Dec 1, 2010, Cairo, Egypt. USA: IEEE, 2010: 272-277.

共引文献13

同被引文献117

引证文献13

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部