期刊文献+

Probing Diverse Disulfur Ligands in the Mo_2S_n^(–/0)(n = 4 ~ 8) Clusters: Structural Evolution and Chemical Bonding

Probing Diverse Disulfur Ligands in the Mo_2S_n^(–/0)(n = 4 ~ 8) Clusters: Structural Evolution and Chemical Bonding
下载PDF
导出
摘要 Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calcula-tions were employed to investigate the geometric and electronic structures of a range of dinuclearmolybdenum sulfide clusters, Mo2S,- and Mo2S,^-/0(n = 4-8). The results showed that the sulfuratoms tended to occupy the terminal sites of the clusters continuously in the process of sequentialsulfidation. After the oxidation state of Mo atoms reached the maximum of +6, diverse disulfurligands emerged in the sulfur-rich Mo2S^-/0 (n = 7,8) clusters. The driving forces of removing asulfur atom from different S ligands in Mo2S^-/0 (n = 4-8) clusters, especially from those disulfurunits, were evaluated. The corresponding order may provide insight into the pretreatment of freshMoS2 catalysts. Vertical detachment energies (VDEs) were predicted according to the GeneralizedKoopmans' theorem, and then the photoelectron spectra (PES) were simulated. Molecular orbitaland spin density values were analyzed to elucidate the chemical bonding and the evolutionarybehavior in the dinuclear molvbdenum sulfide clusters. Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calcula-tions were employed to investigate the geometric and electronic structures of a range of dinuclearmolybdenum sulfide clusters, Mo2S,- and Mo2S,^-/0(n = 4-8). The results showed that the sulfuratoms tended to occupy the terminal sites of the clusters continuously in the process of sequentialsulfidation. After the oxidation state of Mo atoms reached the maximum of +6, diverse disulfurligands emerged in the sulfur-rich Mo2S^-/0 (n = 7,8) clusters. The driving forces of removing asulfur atom from different S ligands in Mo2S^-/0 (n = 4-8) clusters, especially from those disulfurunits, were evaluated. The corresponding order may provide insight into the pretreatment of freshMoS2 catalysts. Vertical detachment energies (VDEs) were predicted according to the GeneralizedKoopmans' theorem, and then the photoelectron spectra (PES) were simulated. Molecular orbitaland spin density values were analyzed to elucidate the chemical bonding and the evolutionarybehavior in the dinuclear molvbdenum sulfide clusters.
出处 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第4期497-516,共20页 结构化学(英文)
基金 supported by the National Natural Science Foundation of China(21301030 and 21371034) the Science and Technology Development Fund of Fuzhou University(XRC-1017 and 2012-XY-6)
关键词 molybdenum sulfide gas-phase cluster density functional theory supersulfido(S2^-) ligand simulated photoelectron spectrum molybdenum sulfide gas-phase cluster density functional theory supersulfido(S2^-) ligand simulated photoelectron spectrum
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部