期刊文献+

基于振动响应传递比函数的系统识别研究进展 被引量:14

RECENT ADVANCES IN SYSTEM IDENTIFICATION USING THE TRANSMISSIBILITY FUNCTION
下载PDF
导出
摘要 与频响函数反映动力系统输入-输出的关系不同,振动响应传递比函数反映的是系统输出-输出之间的关系。振动响应传递比函数可以有效地避免对系统输入的测量,近年来成为系统识别领域重要的分析手段。该文对振动响应传递比函数进行了分类,揭示了传递比函数的特性,并着重阐明了传递比函数与频响函数之间的内在联系。以此为基础,综述了局部传递比(local transmissibility)和传递比矩阵(transmissibility matrix)在结构模态参数识别、损伤识别和模型修正应用中的研究进展。最后,该文指出了基于传递比函数的系统识别存在的问题,并对将来的研究思路作出了展望。 Different from a frequency response function which reflects the input-output relationship of a dynamic system, the transmissibility function represents the output-output relationship of a dynamic system. Not needing the measurement of the system input, the transmissibility function has been viewed as a good candidate for system identification. In this study, the classification of transmissibility function and the relationship between transmissibility function and frequency response function were elucidated. Based on the classification, the applications of the local transmissibility and the transmissibility matrix in modal parameter identification, damage identification and model updating, were systematically summarized. Finally, the underlying issues and research prospects of transmissibility analysis were highlighted.
作者 颜王吉 王朋朋 孙倩 任伟新 YAN Wang-ji;WANG Peng-peng;SUN Qian;REN Wei-xin(Department of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, Chin)
出处 《工程力学》 EI CSCD 北大核心 2018年第5期1-9,26,共10页 Engineering Mechanics
基金 国家重点研发计划项目(2016YFE0113400) 国家自然科学基金项目(51408176 51478159)
关键词 传递比 参数识别 损伤识别 模型修正 健康监测 transmissibility function parameter identification damage identification model updating health monitoring
  • 相关文献

参考文献6

二级参考文献54

  • 1YI TingHua1,2, LI HongNan1 & GU Ming2 1 Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China,2 State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China.Recent research and applications of GPS based technology for bridge health monitoring[J].Science China(Technological Sciences),2010,53(10):2597-2610. 被引量:18
  • 2郭力,李兆霞,陈鸿天.基于子结构分析的多重子步模型修正方法[J].中国工程科学,2006,8(9):42-48. 被引量:11
  • 3Mottershead J E, Friswell M I. Model updating in structural dynamics: A survey [J]. Journal of Sound and Vibration, 1993, 167(2): 347--375.
  • 4Doebling S W, Farrar C R. The state of the art in structural identification of constructed facilities [R]. Los Alamos: Los Alamos National Laboratory, 1999.
  • 5Jaishi B, Ren W X. Structural finite element model updating using ambient vibration test results [J]. Journal of Structural Engineering, 2005, 131(4): 617--628.
  • 6Wang Hao, Li Aiqun, Miao Changqing. FE model and model updating of Runyang suspension bridge [C]. Proceedings of the 2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure. Shenzhen, China, 2005: 1235-- 1241.
  • 7ANSYS user's manual version 8.0 [M]. Houston: Swanson Analysis Systems Inc., 2004.
  • 8Zhang Q W, Sun L M. FE model updating of suspension bridge based on vibration measurements [C]. The Seventh International Symposium on Structural Engineering for Young Experts. Tianjin, China, 2002: 793--800.
  • 9周纪芗,茆诗松.质量管理统计方法[M].北京:中国统计出版社,2006:84-88.
  • 10任伟新,Seismic evaluation of the Tennessee River bridge on I-24 Highway in west Kentucky,2001年

共引文献147

同被引文献99

引证文献14

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部