期刊文献+

基于Kirchhoff板中裂纹尖端辛本征解的有限元应力恢复方法 被引量:4

A STRESS RECOVERY METHOD FOR CRACKS IN KIRCHHOFF PLATE BASED ON THE SYMPLECTIC EIGENSOLUTIONS NEAR THE CRACK TIPS
下载PDF
导出
摘要 对于含穿透裂纹的板结构,裂纹尖端应力场及应力强度因子的计算精度对评估板的安全性具有非常重要的影响。基于含裂纹Kirchhoff板弯曲问题中裂纹尖端场的辛本征解析解,该文提出了一个提高裂纹尖端应力场计算精度的有限元应力恢复方法。首先利用常规有限元程序对含裂纹板弯曲问题进行分析,得到裂纹尖端附近的单元节点位移;然后根据节点位移确定辛本征解中的待定系数,得到裂纹尖端附近应力场的显式表达式。数值结果表明,该方法给出的应力分析精度得到较大提高,并具有良好的数值稳定性。 For a plate structure with through cracks, the calculation accuracy of the stress field and the stress intensity factor near the crack tips has important influence on the safety evaluation of the plate. Based on the analytical symplectic eigen-solutions of the crack tip field in the Kirchhoff plate bending problem with cracks, a finite element stress recovery method is proposed to improve the calculation accuracy of the stress field near the crack tips. Firstly, the bending problem of the cracked plate is analyzed by using the conventional finite element program, and the nodal displacements near the crack tip are obtained. Secondly, the undetermined coefficients in the symplectic eigen-solutions are determined by using nodal displacements, and the explicit expression of the stress field near the crack tip is obtained. The numerical results show that the present approach can present the stress results with more precision and has good numerical stability.
作者 王珊 WANG Shan(Beijing Aerospace Institute of Microsystems, Beijing 100094, China)
出处 《工程力学》 EI CSCD 北大核心 2018年第5期10-16,共7页 Engineering Mechanics
关键词 有限元 辛本征解 Kirchhoff板 裂纹 应力恢复 应力强度因子 finite element method symplectic eigen-solution Kirchhoff plate crack stress recovery stress intensity factor
  • 相关文献

参考文献6

二级参考文献44

  • 1孙雁,郑长良,陈杰夫,钟万勰.电磁对偶元伪解的消除[J].动力学与控制学报,2004,2(1):8-12. 被引量:7
  • 2钟万勰,张洪武.平面断裂解析元的列式[J].机械强度,1995,17(3):1-6. 被引量:7
  • 3应隆安.计算应力强度因子的无限相似单元法[J].中国科学,1977,11:6-6.
  • 4ZIENKIEWICZ O C, TAYLOR R. The Finite Element Method[M]. 4-th ed McGraw-Hill, NY,1989.
  • 5HU Hai-chang. On the approximate solutions of boundary value problems at a point[J]. Science Record, 1952,5:1-4.
  • 6姚伟岸,钟万勰.辛弹性力学[M].高等教育出版社,2003.
  • 7TIMOSHENCO S P, GOODIER J N. Theory of Elasticity[M]. McGraw-Hill, 1951.
  • 8Zienkiewicz J Z, Zhu O C. Accuracy and adaptivity in FE analysis: The changing face of practical computations [J]. Computational Mechanics, 1991, (1): 3-12.
  • 9Aliabadi M H. Boundary element formulations in fracture mechanics [J]. Appl Mech Rev, 1997, 50(2): 83-96.
  • 10Lee H Y, Hong C S. New weight function approach using indirect boundary integral method [J]. Eng Fracture Mech, 1996, 53(6): 957-974.

共引文献46

同被引文献17

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部