期刊文献+

感潮河段水体叶绿素三波段模型优化与应用

The Application of Three-band Inversion Model of Chlorophyll Concentration in the Saltwater Intrusion River
下载PDF
导出
摘要 将地球植被的色素浓度的估算模型应用于珠江口感潮河段的水体叶绿素反演,并运用迭代优化方法优化了珠江口三波段叶绿素光谱模型。基于实测数据建立的叶绿素三波段反演模型,结果表明:叶绿素三波段模型线性关系直线斜率的变化与叶绿素a的均值浓度负相关,其第一波段随叶绿素a升高向短波方向移动;解释了81%的珠江河口叶绿素a变化,RMSE=1.4 mg/m^3,这个结果好于国内外同行的研究。EO-1 Hyperion的叶绿素制图结果表明,RMSE=3 mg/m^3(相对误差小于9.5%),叶绿素的空间分布也与地理趋势规律一致,为将来发射叶绿素制图传感器提供了依据。 The estimation model of vegetation pigment concentration is applied to the chlorophyll inversion in the tidal river section of the Pearl River Estuary and the three-band chlorophyll spectrum model of the Pearl River Estuary is optimized by iterative optimization method. The model based on measured data shows negative correlation between chlorophyll concentration and linear slope, and its first band moves to the short wave direction with chlorophyll increased. The three-band model explaines 81% chlorophyll of the Pearl River Estuary with RMSE=1.4 mg/m3 which is better than the research on domestic and foreign counterparts. The chlorophyll mapping results based on EO-1 Hyperion show that the spatial distribution of chlorophyll is consistent with the geographical trend with RMSE=3 mg/m3 (relative error was less than 9.5%),which provides a basis for future sensors of chlorophyll mapping.
作者 方立刚 FANG Ligang(School of Computer Engineering,Suzhou Vocational University,Suzhou 215104,China)
出处 《苏州市职业大学学报》 2018年第2期1-6,共6页 Journal of Suzhou Vocational University
基金 国家自然科学基金资助项目(41201338) 江苏省第四期"333工程"资助项目(BRA2015096)
关键词 感潮河段 叶绿素 三波段模型 tidal river chlorophyll three-band model
  • 相关文献

参考文献1

二级参考文献15

  • 1MagnusLarson,Lennartjnsson.Estimation of chlorophyll-a concentration in the Zhujiang Estuary from SeaWiFS data[J].Acta Oceanologica Sinica,2002,21(1):55-65. 被引量:10
  • 2陈楚群,施平,毛庆文.应用TM数据估算沿岸海水表层时绿素浓度模型研究[J].环境遥感,1996,11(3):168-176. 被引量:66
  • 3林祖亨,梁舜华.珠江口水域的潮流分析[J].海洋通报,1996,15(2):11-12. 被引量:26
  • 4IOCCG. Remote sensing of ocean colour in coastal and other optically-complex water[A]. Sathyendranath S (ed). Reports of the International Ocean-Color Coordinating Group, No. 3, IOCCG, Dartmouth, Canada, 2000.
  • 5Louis E Keiner, Xiao Hai Yan. A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery[J]. Remote Sensing Environ. , 1998,66:153-165.
  • 6Hornik K, Stineheombe M, White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[J]. J. Neural Networks, 1990, 3: 551-560.
  • 7Cybenko G. Continous value neural networks with two hidden layers are suffieient[J]. J. Math. Contr. Sign. & Sys. , 1989, 2: 303-314.
  • 8O'Reilly J E, Maritorena S, Mitchell B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research, 1998,103(cll) : 24 937-24 953.
  • 9Gordon H R, Wang M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaW-iFS: A preliminary algorithm[J]. Applied Optics, 1994, 33: 443-452.
  • 10黄良民 陈清潮 黄创俭.珠江口海区初级与次级生产的关系初探[A]..珠江及沿岸环境研究[c].广州:广东高等教育出版社,1994.13-24.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部