期刊文献+

混合次分数布朗运动下交换期权的定价 被引量:3

Exchange Option Pricing in Mixed Sub-fractional Brownian Motion
下载PDF
导出
摘要 考虑混合次分数布朗运动过程下交换期权的定价问题。在标的资产价格服从混合次分数布朗运动模型条件下,利用混合次分数布朗运动的随机分析理论和偏微分方程方法,建立混合次分数布朗运动驱动下的金融市场模型,并得到交换期权的定价公式。该模型也可应用于其他期权的定价。 This paper considers the pricing problem of the exchange option in the mixed sub-fractional Brownian motion. Under the assuming of the stock price obeying mixed sub-fractional Brownian motion,the mathematical model for the financial market in the mixed sub-fractional Brownian motion setting is established. Using the mixed sub-fractional Brownian motion theory and PDE approach,the general pricing formula for the exchange option is obtained.
作者 徐峰 李润泽 XU Feng;LI Runze(Business School,Suzhou Vocational University,Suzhou 215104,China;School of Economics & Trade,Hunan University,Changsha 410006,China)
出处 《苏州市职业大学学报》 2018年第2期42-45,共4页 Journal of Suzhou Vocational University
关键词 混合次分数布朗运动 交换期权 Black-Scholes偏微分方程 mixed sub-fractional Brownian motion exchange option Black-Scholes partial differential equation
  • 相关文献

参考文献2

二级参考文献19

  • 1赵巍,何建敏.股票价格遵循分数Ornstein-Uhlenback过程的期权定价模型[J].中国管理科学,2007,15(3):1-5. 被引量:20
  • 2F Baudoin, D Nualart. Equivalence o] Volterra processes, Stochastic Process Appl, 2003, 107: 327-350.
  • 3T Bojdecki, L G Gorostiza, A Talarczyk. Sub-fractional Brownian motion and its relation to occupation times, Statist Probab Lett, 2004, 69: 405-419.
  • 4T Bojdecki, L G Gorostiza, A Talarczyk. Fractional Brownian Density and its Self-Intersection Local Time of Order k, J Theoret Probab, 2004, 17: 717-739.
  • 5T Bojdecki, L C Gorostiza, A Talarczyk. Particle systems with quasi-homogeneous initial states and their occupation time Juctuations Electron Commun Probab 2010, t5: 191-202.
  • 6P Cheridito. Mixed fractional Brownian motion, Bernoulli, 2001, 7: 913-934.
  • 7C Dellacherie. P A Mever. Probabilitds et Potentiel: ChaDitres V VIIL Paris, Hermanm 1980.
  • 8C E1-Nouty. The fractional mixed fractional Brownian motion, Statist Probab Lett, 2003, 65: 111-120.
  • 9C E1-Nouty. The lower classes of the sub-fractional Brownian motion, In: Stochastic Differential Equations and Processes, Springer Proc Math, 2012, 7: 179-196.
  • 10G H Golub, C F Van Loan. Matrix Computations, Hopkins University Press, 1989.

共引文献41

同被引文献23

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部