摘要
自从Joseph-Egri方程被提出以来,人们用了多种方法去对获取它的精确行波解,但是依然有一些解可能被丢失,并且无法解释参数变化时解的演化。为了解决这些问题,利用动力系统分岔方法研究了Joseph-Egri方程的行波系统,获得了其不同拓扑结构的相图。这些相图清楚地展示了系统所有的有界轨道。对照这些有界轨道,通过计算复杂的椭圆积分,获得了系统的椭圆函数周期波解和孤波解。
Since the Joseph-egri eqution was proposed,many methods are used to obtain its exact traveling wave solutions.However,there are still many solutions that are lost,and they can't explain how the solutions evolve when the parameters change.To solve these problems,the bifurcation method of dynamical system is employed to investigate the Joseph-Egri equation.We obtain different phase portraits of traveling wave system of it.According to these phase portraits,all bounded traveling waves are identified.Furthermore,by calculating some complicated elliptic integrals,we obtain the exact expressions of periodic wave solutions and solitary wave solutions.
作者
郭嘉
周钰谦
范飞廷
GUO Jia1, ZHOU Yu-qian1,2, FAN Fei-ting1(1. College of Mathematies, Chengdu Univereity of Information Technology, Chengdu 610225, China ;2. School of mathematics Sciences, Univereity of Eleetronie Science and Technology of China, Chengdu 611731, Chin)
出处
《成都信息工程大学学报》
2018年第1期103-106,共4页
Journal of Chengdu University of Information Technology
基金
国家自然科学基金资助项目(11301043
11171046)
四川省教育厅重点资助项目(12ZA224)
关键词
应用数学
微分方程及其应用
Joseph-Egri方程
相图
动力系统
分岔
孤波解
applied mathematics
differential equation and their applications
Joseph-Egri equation
phase portraits
dynamical system
bifurcation
solitary wave solution