期刊文献+

多项时间-空间分数阶微分方程的PIM求解 被引量:1

PIM for Solving Multi-terms Time-space Fractional Equation
下载PDF
导出
摘要 采用多项式基点插值(P IM)配置法求解多项时间-空间分数阶微分方程。首先进行时间离散得到半离散格式。然后,利用多项式基点插值离散空间变量得到全离散格式。最后,利用数值例子验证了数值方法的有效性。数值例子表明,无论是等距节点还是非等距节点,所提出的数值方法均能很好的近似微分方程的精确解。 In this paper, we make the first attempt to apply polynomial basis interpolation collocation method for the multi-terms time- space fractional equation. After diseretizing the time variable a senti-discrete scheme is obtained, then a full discrete scheme is proposed after diseretizing the space variable. Finally, the proposed numerical method is testified by numerical results with regular nodes and irreg- ular nodes.
作者 危国华 WEI Guohua(Sanming Branch, Open University of Fujian, Sanming, Fujian 36500)
出处 《武夷学院学报》 2018年第3期1-6,共6页 Journal of Wuyi University
关键词 时间-空间分数阶微分方程 多项式基 配置法 点插值 time-space fractional differential equation PIM collocation method point interpolation.
  • 相关文献

参考文献1

二级参考文献5

  • 1Ralf Metzler,Joseph Klafter.The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J].Physics Reports.2000(1)
  • 2H. Jiang,F. Liu,I. Turner,K. Burrage.Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain[J].Journal of Mathematical Analysis and Applications.2012(2)
  • 3G.M. Zaslavsky.Chaos, fractional kinetics, and anomalous transport[J].Physics Reports.2002(6)
  • 4Ralf Metzler,Theo F. Nonnenmacher.Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation[J].Chemical Physics.2002(1)
  • 5V. V. Anh,N. N. Leonenko.Spectral Analysis of Fractional Kinetic Equations with Random Data[J].Journal of Statistical Physics (-).2001(5-6)

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部