期刊文献+

机器学习中的特征选择方法研究及展望 被引量:41

The Key Techniques and Future Vision of Feature Selection in Machine Learning
原文传递
导出
摘要 任何领域的大数据研究都离不开用机器学习方法提取特征.为了探求满足海量大数据分析需求的特征选择方法,笔者对利用机器学习进行特征选择的常用方法做了深入分析,归纳总结出特征选择的五大类方法:相关性度量方法、Lasso稀疏选择方法、集成方法、神经网络方法、主成分分析方法.通过对比不同特征选择方法的原理、实现过程以及应用场景,给出了不同算法下进行特征选择时的适用范围、优缺点和关键点,为研究者提供参考. Big data research is widely spread around the world,and feature selection of machine learning plays an important role on these researches. To address the issue of discovering novel feature selection methods in data mining tasks on big data,this paper researches five models related to feature selection:linear coefficient correlation,Lasso sparse selection,ensemble learning models,neural networks,principal component analysis. The merits and drawbacks of these models are extensively discussed in depth in this paper,which may help in providing a direction for those who are interested in the machine learning area.
作者 崔鸿雁 徐帅 张利锋 Roy E.Welsch Berthold K.P.Horn CUI Hong-yan1,2,3, XU Shuai1,2,3, ZHANG Li-feng1,2,3, Roy E. Welsch4 , Berthold K. P. Horn5(1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2. Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing 100876, China; 3. Beijing Laboratory of Advanced Information Networks, Beijing 100876, China; 4. Sloan School of Management, Massachusetts Institute of Technology, MA 02139, USA; 5. Csail Laboratory, Massachusetts Institute of Technology, MA 02139, US)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2018年第1期1-12,共12页 Journal of Beijing University of Posts and Telecommunications
基金 教育部-中国移动科研基金项目(MCM20170306)
关键词 机器学习 特征选择 迁移学习 对抗神经网络 人工智能 machine learning feature selection transfer learning generative adversarial networks arti-ficial intelligence
  • 相关文献

参考文献3

二级参考文献13

  • 1Blei D M, Jordan M J. Latent dirichlet allocation[J]. Jour- nal of Machine Learning Research, 2003(3): 993-1022.
  • 2Wei Xing, Bruce W. LDA-based document models for Ad-hoc retrieval[ C ]//Proceedings of the 29h Annual In- ternational ACM SIGIR Conference on Research and De- velopment in Information Retrieval (SIGIR2006). Seat- tle: ACM, 2006:178 - 185.
  • 3Wang Ai, Li Yaodong, Wang Wei. Crosslanguage infor- mation retrieval based on LDA [ C ] //IEEE International Conference on Intelligent Computing and Intelligent Sys- tems( ICIS 2009). Shanghai: IEEE, 2009 : 485-490.
  • 4Ye Zheng, Huang Xiangji, Lin Hongfei. Finding a good query-related topic for boosting pseudo relevance feedback [ J]. Journal of the American Society for Information Sci- ence and Technology, 2011, 62(4) : 748-760.
  • 5Wang Xuwen, Zhang Qiang, Wang Xiaojie, et al. LDA based pseudo relevance feedback for cross language infor- mation retrieval [ C ]//IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS2012). Hangzhou : IEEE, 2012 : 1993-1998.
  • 6Mimno D, Wallach H M, Naradowsky J, et al. Polylin- gual topic models[ C]//Proceedings of the 2009 Confer- ence on Empirical Methods in Natural Language Process- ing (EMNLP2009). Singapore: ACL, 2009 : 880-889.
  • 7Ivan Vuli' c, Wim De Smet, Marie-Francine Moens. Identifying word translations from comparable corpora using latent topic models [ C ] //Proceedings of the 49'h Annual Meeting of the Association for Computational Lin- guistics: shortpapers ( ACL2011 ). Portland, Oregon: ACL, 2011: 479-484.
  • 8Iqbal M, Chen Jie, Wen Xianzhong, et al. Remote sens- ing image fusion using best bases sparse representation [ C ] // Geoscience and Remote Sensing Symposium (IGARSS), 2012. Munich: IEEE International, 2012, 22 ( 27 ) : 5430-5433.
  • 9Zhou Wang. A universal image quality index [ C ]//Signal Processing Letters. Storrs: IEEE, 2002, 9(3) : 81-84.
  • 10Lueiano A, Stefano B. A global quality measurement ofpan-sharpened multispectral and Remote Sensing Letters imagery [ C ] // Geoscience Alagoas: IEEE, 2004, 1(4) : 313-317.

共引文献25

同被引文献449

引证文献41

二级引证文献281

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部