摘要
令李代数g=sl(n+1)的基域是特征为素数p的代数闭域k且满足pn+1.本文在g的次正则幂零表示中,证明了相同块中的任意两个小Verma模的同态是非零的.这揭示了小Verma模之间的完整联系.
Let g = sl(n + 1) be the special linear Lie algebra over an algebraically closed field k of prime characteristic p with p n + 1. We show that the hom-spaces between any two baby Verma modules in the same given block are always nonzero for subregular nilpotent representations of g, which reveals a complete linkage atlas for baby Verma modules.
作者
李宜阳
舒斌
叶刚
LI Yi-yang;SHU Bin;YE Gang(School of Mathematics, Physics and Statistics, Shanghai University of Engineering Scienc;School of Mathematical Sciences, East China Normal Universit)
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第3期18-24,45,共8页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(11671138)
新疆维吾尔自治区自然科学基金(2016DOlA014)