摘要
随着车辆日益增多,交通事故频繁发生,找出影响交通事故发生的真正因素是目前交通管理部门要解决的主要问题。基于贵阳市交通管理部门开放的交通事故数据,采用多项Logistic回归模型和Apriori算法,发现多项Logistic回归模型能很好地拟合数据且能找出影响城市交通安全的显著性因素,Apriori算法通过识别或发现交通事故数据中所有的频繁项集,能够挖掘出人、车、道路、天气因素之间的关联对交通事故类型的影响,数据分析结果可为交通管理相关部门提供参考。
As the vehicles are increasing,traffic accident has become a serious social problem,finding out the real factors that affect the traffic accident is the main problem for the traffic management department to solve.Based on the opened traffic accident data of Guiyang traffic administrative department,using multiple Logistic regression model and Apriori algorithm,it is found that multiple Logistic regression model can fit the data well and the significant factors that affect urban traffic safety were found. Apriori algorithm by identifying or finding all frequent item sets in the traffic accident data,can excavate the influence of people,cars,roads and weather factors on traffic accident types,the results of data analysis can provide reference for traffic management departments.
作者
王丹
胡尧
吴楠
商明菊
WANG Dan;HU Yao;WU Nan;SHANG Mingju(School of Mathematics and Statistics, Guizhou University, Guiyang 550025,China;Guizhou Provincial Key Laboratory of Public Big Data, Guiyang 550025, China)
出处
《贵州大学学报(自然科学版)》
2018年第2期14-21,共8页
Journal of Guizhou University:Natural Sciences
基金
国家自然科学基金项目(11661018
11361015)
全国统计科学研究项目(2014LZ46)
贵州省自然科学基金项目(黔科合J字[2014]2058号)
贵州省科技计划项目(黔科合平台人才[2017]5788号)
贵州大学2017年研究生创新基金项目(研理工2017067)