期刊文献+

基于深度学习的商品评价情感分析与研究 被引量:5

Commodity Evaluation Analysis and Research Based on Deep Learning
下载PDF
导出
摘要 移动互联网助推的电子商务时代使得商品评价空前繁荣,论文提出一种基于深度学习的改进型模型来分析评价数据的情感。首先通过分词与综合停用词表等预处理数据集,然后使用Skip-gram模型训练出数据集中每个词的词向量,并使用自扩充情感词典对评价语句情感极性进行量化,量化的情感正负值与词向量形成融合矩阵输入,并通过分流规则设计进行差异网络输入,选择CNN或RNN完成抽象特征提取,即Shunt-C&RNN产品评价分类模型(改进型深度学习方法)。与传统机器学习SVM相比,改进型深度学习方法准确率大幅提升6.6%,较单一深度学习方法提高了近1.5%。 This paper proposes an improved deep learning model for commodity evaluation sentiment analysis. Firstly,this paper uses stop words and tokenizer to pretreatment the data,then Skip-gram model is used to generate word vectors. Secondly,an autogenerated sentiment lexicon is used to quantify the sentiment polarity of words in commodity reviews and integrate this information into the model input matrix. Lastly,this paper counts the differences between the network input through the distribution rules of designed and chose RNN or CNN for feature extraction. Above all is the Shunt-CRNN commodity reviews sentiment classification model(improved deep learning approach). Compared with the traditional machine learning SVM and the single deep learning method the proposed method has improved the precision by 6.6% and 1.5% respectively.
作者 刘智鹏 何中市 何伟东 张航 LIU Zhipeng;HE Zhongshi;HE Weidong;ZHANG Hang(School of Computer Science,Chongqing University,Chongqing 400044;School of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065)
出处 《计算机与数字工程》 2018年第5期921-927,共7页 Computer & Digital Engineering
基金 国家交通部科技项目(编号:2011318740240) 重庆市研究生科研创新项目(编号:CYS16031)资助
关键词 深度学习 自然语言处理 词向量 卷积神经网络 循环神经网络 分流器 情感 deep learning natural language processing word embidding CNN RNN shunt sentiment analysis
  • 相关文献

参考文献1

二级参考文献13

  • 1BALAHUR A, STEINBERGER R, KABADJOV M, et al. Sentiment analysis in the news[ J]. Infrared Physics and Technology, 2014, 65:94-102.
  • 2JIANG Long, YU Mo, ZHOU Ming, et al. Target-dependent twitter sentiment classification[ C ]//Proc of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Techno- logies . 2011.
  • 3王金刚,于潇,宋丹丹,等.基于中文bag-of-opinions方法的微博情感分析[C]//NLP&CC.2012.
  • 4PAK A, PAROUBEK P. Twitter as a corpus for sentiment analysis and opinion mining [ C ]//Proc of International Conference on Lan- guage Resources and Evaluation. 2010.
  • 5TABOADA M, BROOKE J, TOFILOSKI M, et al. Lexicon-based methods for sentiment analysis [ J ]. Computational Linguistics, 2011, 37(2) : 267-307.
  • 6LUCIANO B, FENG Jun-lan. Robust sentiment detection on twitter from biased and noisy data[ C]//Proc of the 23rd International Con- ference on Computational Linguistics. 2010.
  • 7PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques [ C ]//Proc of Confe- rence on Empirical Methods in Natural Language Processing. 2002: 79- 86.
  • 8CUI Hang, MITYAL V, DATAR M. Comparative experiments on senti- ment classification for online product reviews [ C ]//Proc of the 21st National Conference on Artificial Intelligence. 2006: 1265-1270.
  • 9KOULOUMIS E, WILSON T, MOORE J. Twitter sentiment analysis: the good the bad and the OMG! [ C]//Proc of the 5th International AAAI Conference on Weblogs and Social Media. 2011: 538-541.
  • 10TURNEY P. Thumbs up or thumbs down? Semantic orientation ap- plied to unsupervised classification of reviews [ C]//Proc of the 40th Annual Meeting of the Association for Computational Linguistics. 2002:417-424.

共引文献82

同被引文献37

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部