期刊文献+

基于关联规则的化妆品专利中草药组分的研究

Research on Chinese Herbs Components in Cosmetic Patents Based on Association Rules
下载PDF
导出
摘要 目的:探究化妆品中主要组分及其之间的关联、配伍规则。方法:对收集的375件中草药化妆品专利借用数据挖掘算法中的关联规则算法进行数据分析。结果:研究表明高频数单一中草药有珍珠粉、白芷和芦荟,中草药对有芦荟—甘草,中草药组有芦荟—甘草—丁香。根据关联规则算法,我们得到了化妆品专利中中草药组分的强关联规则有丁香,芦荟■甘草等11条。结论:得出关联规则的结果与由于中草药功效而组合一起的实际应用相一致的结论,并分析出核心组分、中草药的使用规则及其联系,用以指导化妆品中中草药组分的应用。 Objective: To Explore the main components of Chinese herbs used in cosmetic patents and,their association,and compatibility rules. Methods: Association rule technology,one of data mining,was applied to analyze and explore data of Chinese herbs in 375 items of cosmetic patent. Results: Studies have shown that the frequent single Chinese herbs cover pearl powder,angelica dahurica and aloe vera; the frequent Chinese herb couplet covers aloe-licorice; the frequent Chinese herb group covers aloe-licorice-clove. According to the association rules algorithm,11 strong association rules of Chinese herbal medicine components in cosmetics patents have been obtained,including clove,aloe vera,licorice. Conclusion: The result of the association rules is consistent with the practical application due to the efficacy of Chinese herbs. The core components,compatible utilization rules of Chinese herbs and the mutual correlation are analyzed and obtained to guide the application of Chinese herbs components in cosmetics.
作者 胡超男 杨官娥 HU Chao-nan;YANG Guan-e(School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001)
出处 《赣南医学院学报》 2018年第4期319-322,共4页 JOURNAL OF GANNAN MEDICAL UNIVERSITY
关键词 化妆品 专利 数据挖掘 关联规则 cosmetics patent data mining association rules
  • 相关文献

参考文献2

二级参考文献4

  • 1尚志钧,校注.神农本草经校注.北京:学苑出版社,2008,5.
  • 2薛薇.SPSS统计分析方法及应用[M].北京:电子工业出版社,2004..
  • 3AGRALWAL R, SRIKANT R. Fast algorithms for mining associa tion rules[A]. Proceedings of the Twentieth International Conference on Very Large Data Bases (VLDB'94)[C]. Santiago, Chile: Morgan Kaufmann, 1994. 487-499.
  • 4KAMBER M, HAN J, CHIANG J Y. Metarule-guided mining of multi-dimensional association rules using data cubes[A]. Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining(KDD'97)[C]. California: New Port Beach, 1997.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部