摘要
提出了一种基于振动时频图像全局和局部特征融合的柴油机故障诊断方法。采用平滑伪维格纳分布(SPWVD)方法生成柴油机振动时频图像,分别用核主元分析(KPCA)和局部非负矩阵分解(LNMF)方法提取时频图像的全局和局部特征进行融合,并用独立分量(ICA)分析方法对融合后的特征进行降维,对降维后的融合特征进行分类完成对柴油机的故障诊断。试验结果表明,基于振动时频图像全局和局部特征融合的柴油机故障诊断方法,能够准确诊断柴油机的气门故障。
The global and local features fusion of a time-frequency image was introduced into the diesel engine fault diagnosis. Time-frequency images of a diesel engine were generated by the method of smoothed pseudo wigner-ville distribution( SPWVD). Then, the kernel principal component analysis( KPCA) and local nonnegative matrix factorization( LNMF) method were used to extract its global and local features,and the independent component analysis( ICA) method was used for the dimension reduction of the characteristics after fusion. Finally,the fused features were classified to complete the diesel engine fault diagnosis.
作者
牟伟杰
石林锁
蔡艳平
郑勇
刘浩
MU Weijie;SHI Linsuo;CAI Yanping;ZHENG Yong;LIU Hao(Rocket Force University of Engineering, Xi’an 710025, China;PLA Army Special Operations College of Engineering,Guilin 541000,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2018年第10期14-19,49,共7页
Journal of Vibration and Shock
基金
国家自然科学基金青年基金(51405498)
中国博士后基金资助(2015M582642)
关键词
柴油机
故障诊断
时频图像
全局特征
局部特征
特征融合
diesel
fault diagnosis
time-frequency image
global feature
local feature
features fusion